首页|低空监控系统的红外小目标检测方法

低空监控系统的红外小目标检测方法

扫码查看
无人机遥感系统在检测复杂背景下红外小目标时存在虚警过高的问题,结合卷积神经网络提出一种两阶段的无人机遥感系统红外小目标检测模型.第一阶段利用Unet神经网络学习红外图像中目标的深度语义特征与浅层位置特征,同时增强红外小目标信号,并抑制背景信号.第二阶段利用Faster R-CNN对第一阶段输出的图像进行分析,检测图中红外小目标的位置与边框.在公开的无人机遥感系统红外小目标检测数据集上完成了验证实验,结果表明该模型将三个复杂背景数据集下红外小目标的检测精度分别提高了 13.2、9.8与13个百分点,每秒处理的帧数分别增加了 11、14 与 13.
Infrared small target detection method of low-altitude monitoring system
Aiming at the problem of high false alarm rate of infrared small target detection of unmanned aerial vehicle remote sensing system in complex environment,a two-stage infrared small target detection model of the unmanned aerial vehicle remote sensing system is proposed with combination of convolutional neural networks.In the first phase,the Un-et neural network is taken advantage to learn the deep semantic features and shallow location features of targets in the in-frared image,meanwhile,the infrared week and small target signal is enhanced and the background signal is suppressed.In the second phase,Faster R-CNN is utilized to analyze the output image of the first phase,to detect the location and bounding box of infrared small target.Validation experiment is carried on the public infrared small target detection data-set of the unmanned aerial vehicle remote sensing system,the results show that the detection precision of the proposed model for infrared small target increases by 13.2、9.8 and 13 percentage points on three complex background datasets re-spectively,and the processed frames per second increase 11、14 and 13.

remote sensing systemunmanned aerial vehicledeep neural networksresidual networksweek ands-mall targetinfrared thermography

杨芳、王萌

展开 >

河北公安警察职业学院警务科研处,石家庄 050000

河北公安警察职业学院公安技战术系,石家庄 050000

目标检测 遥感系统 无人机 深度神经网络 残差网络 弱小目标 红外热成像

河北省教育厅课题河北省社会科学发展研究课题

ZC202211220210201241

2024

光学技术
北京兵工学会 北京理工大学 中国北方光电工业总公司

光学技术

CSTPCD北大核心
影响因子:0.441
ISSN:1002-1582
年,卷(期):2024.50(1)
  • 23