首页|基于深度学习与RSS滤波的可见光室内定位算法

基于深度学习与RSS滤波的可见光室内定位算法

扫码查看
为了提高可见光室内三维定位的准确率与稳定性,提出一种基于深度学习与接收信号强度滤波的可见光室内定位方法.首先,采集每个参考点接收的所有接收信号强度样本,使用聚类算法对接收信号强度样本进行滤波,剔除低值簇与高值簇中的高偏差接收信号强度样本;然后,在高精度无线电地图上训练深度神经网络回归模型,学习接收器位置与接收信号强度样本之间的统计关系.仿真结果表明,方法在6m×6m×3m室内环境下的平均定位误差小于4cm,且支持LED数量的扩展.
Visible light indoors positioning algorithm based on deep learning and RSS filtering
To improve the accuracy and stability of the visible light indoors three dimensional positioning,a visible light indoors positioning method based on deep learning and received signal strength indication filtering is proposed.First-ly,all received signal strength indication samples acquired on each reference point are collected,a clustering algorithm is used to filter the received signal strength indication samples,the received signal strength indication samples with signifi-cant deviation in the low value cluster and high value cluster are eliminated;then,the deep neural networks regression model is trained on the high accuracy radio map,so as to learn the statistical relationship between the receiver position and the receive signal strength.Simulation results show that the average positioning error of the proposed method is lower than 4cm in a 6mX6mX3m room,it also has the ability of LED scalability.

deep learningdata clusteringradio mapreceived signal strength indicationdata filtering

曹海锋、王晓亮

展开 >

山西工程职业学院信息工程系,山西太原 030000

东北电力大学计算机学院,吉林 132000

深度学习 数据聚类 无线电地图 接收信号强度 数据滤波

山西省教育科学规划课题院项目

GHˇ220858

2024

光学技术
北京兵工学会 北京理工大学 中国北方光电工业总公司

光学技术

CSTPCD北大核心
影响因子:0.441
ISSN:1002-1582
年,卷(期):2024.50(3)
  • 17