首页|偏振微面双向反射分布函数建模与仿真研究

偏振微面双向反射分布函数建模与仿真研究

扫码查看
偏振双向反射分布函数(p-BRDF)可以描述物体表面反射光的空间偏振特性,在许多领域得到了应用.基于微面理论,由微面和物体表面的角度关系以及微面上的菲涅耳反射,对任意偏振状态入射光和反射光的电场振动矢量进行分解与合成,得到偏振反射率pjk,将其作为菲涅耳反射项代入Cook-Torrance BRDF模型中,建立偏振微面BRDF模型.在几何光学模型中引入偏振,模型简单且有明确的物理意义.利用粒子群优化算法,结合黄铜表面的面内BRDF实验数据拟合模型中的参数,参数选取的标准均方误差为0.2820~5.7049%,最佳校正决定系数为0.9957.结果表明,偏振微面BRDF模型用于描述偏振反射特性的准确性和可行性.
Modeling and simulation of polarization microfacet bidirectional reflectance distribution function
The polarization Bidirectional Reflectance Distribution Function(p-BRDF)can describe the spatial polariza-tion characteristics of the reflected light on an object's surface,and has been widely used in many fields.Based on the mi-crofacet theory,the electric field vectors of polarized incident and reflected light are decomposed and composed by the angle relationship between the microfacet and the object surface,as well as the Fresnel reflection on the microfacet,to obtain the polarization reflectivity.This is then used as the Fresnel reflection term in the Cook-Torrance BRDF model to estab-lish a polarization microfacet BRDF model.Introducing polarization into geometric optical model is simple and has clear physical meaning.The Particle swarm optimization algorithm is used to fit the parameters in the model with the in-plane BRDF experimental data on the brass surface.The standard mean squared error of the model parameter selection is be-tween 0.2820%and 5.7049%,and the best adjusted R2 is 0.9957.The results indicate the feasibility of using the polari-zation microfacet BRDF model to describe the polarization reflection characteristics.

optical measurementpolarization bidirectional reflectance distribution functionmicrofacet theorypo-larization reflectivityparticle swarm optimization

黄宝锐、彭勃、任栖锋、廖胜

展开 >

中国科学院光电技术研究所,四川成都 610209

电子科技大学光电科学与工程学院,四川成都 610054

中国科学院光场调控科学技术全国重点实验室,四川成都 610209

中国科学院空间光电精密测量技术重点实验室,四川成都 610209

中国科学院大学,北京 100049

展开 >

光学测量 偏振双向反射分布函数 微面理论 偏振反射率 粒子群优化算法

国家自然科学基金

42304192

2024

光学技术
北京兵工学会 北京理工大学 中国北方光电工业总公司

光学技术

CSTPCD北大核心
影响因子:0.441
ISSN:1002-1582
年,卷(期):2024.50(5)