首页|基于边缘及多尺度特征融合的显著性目标检测方法

基于边缘及多尺度特征融合的显著性目标检测方法

扫码查看
为了提高显著性目标分割的准确性,提出了一种基于边缘及多尺度特征融合的显著性目标检测方法.该方法首先利用ResNet50网络提取特征,并结合改进的空间注意力模块以增强目标特征的表征能力.接着,提出一种全新的边缘及多尺度特征融合模块,有机结合边缘信息与多尺度特征信息,并设计了一个综合考虑了显著性目标主体分割和边缘分割的损失函数,对特征融合模块进行有效监督,保证了模型在训练过程中会同时关注显著性目标主体和边缘的细节信息,以提高显著性目标的主体和边缘清晰度.最后,创新性地引入上下文增强模块,有效减少深度学习网络中多次上、下采样过程中信息的丢失,从而提高显著性目标主体和边缘的准确性.通过在3个公开数据集上与近几年的8个主流算法相比较,该方法在定量结果和定性结果上均优于其他算法,验证了该方法的有效性和优越性.
Salient object detection method based on edge and multi-scale feature fusion
Aiming at improving the accuracy of salient object segmentation,a salient object detection method based on edge and multi-scale feature fusion was proposed.Firstly,the ResNet50 network was used to extract features from ima-ges.Then,an improved spatial attention module was utilized to enhance the representation ability of features.Next,a novel edge and multi-scale feature fusion module was proposed,which organically combines edge information with multi-scale features information,and a loss function that comprehensively considers salient object subject segmentation and edge segmentation was designed to effectively supervise the future fusion module,ensuring that the model will simultaneously focus on the detail information of salient object subject and edge during training,in order to improve the clarity of salient object subject and edge.Finally,a context enhancement module was introduced innovatively to effectively reduce informa-tion loss during multiple upsampling and downsampling processes in deep learning networks,thereby improving the accuracy of the salient object subject and edge.Compared with eight mainstream algorithms in recent years on three public datasets,this method outperforms other algorithms in both quantitative and qualitative results,verifying its effectiveness and superiority.

salient object detectionedgemulti-scale featuresfeature fusionconvolutional neural network

占钟鸣、李庆武、余大兵、赵乙新

展开 >

河海大学信息科学与工程学院智能视觉感知实验室,江苏常州 213200

显著性目标检测 边缘 多尺度特征 特征融合 卷积神经网络

数字孪生胶东调水先行先试项目

SDSS-RJCG-202310

2024

光学技术
北京兵工学会 北京理工大学 中国北方光电工业总公司

光学技术

CSTPCD北大核心
影响因子:0.441
ISSN:1002-1582
年,卷(期):2024.50(5)