首页|基于改进YOLOv7-Tiny的轻量化百香果检测方法

基于改进YOLOv7-Tiny的轻量化百香果检测方法

扫码查看
在果园中,准确且快速的果实检测是水果产量预测和自动化采摘等农业智能化应用的关键任务之一。针对目前目标检测模型参数量和计算量大,难以满足嵌入式设备实时性要求的问题,本文提出一种基于改进YOLOv7-Tiny的轻量化检测方法,用于复杂果园环境中百香果的检测。首先,在主干网络中使用全维动态卷积(ODConv),提高主干网络的特征提取能力,使平均精度均值(mAP)提升2个百分点;其次,为了减少颈部网络的参数量和计算量,融合GhostNet网络和MobileOne网络,提出GMConv轻量化模块,使模型参数量下降约30%,计算量下降约20%,FPS提高约50 frame/so在百香果数据集上的实验结果表明,与YOLOv7-Tiny相比,改进后算法的参数量和计算量分别下降32。1%和25。4%,mAP提升2。6个百分点。在降低计算量和参数量的前提下,改进后算法进一步提高了检测精度,有利于在嵌入式设备中部署。
Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny
Accurate and fast detection of fruits in orchards is one of the key tasks for intelligent agricultural approaches,such as fruit yield prediction and automated harvesting.A lightweight detection method based on an improved YOLOv7-Tiny is proposed in this paper to address the current issue of large parameters and FLOPs in object detection models.The method is specifically designed for detecting passion fruit in complex orchard environments,aiming to enhance real-time applicability on embedded devices.Firstly,the Omni-dimensional Dynamic Convolution(ODConv)is employed in the backbone network to enhance its feature extraction capability,thereby increasing the mean Average Precision(mAP)by 2 percentage points.Furthermore,to reduce the parameters and FLOPs of the neck network,the GMConv lightweight module is proposed by integrating the GhostNet network and the MobileOne network.The parameters and FLOPs have decreased by approximately 30%and 20%,respectively,and the model's FPS has increased by around 50 frame/s.Experimental results on the passion fruit dataset reveal that,compared with YOLOv7-Tiny,the parameters and FLOPs of the improved algorithm have decreased by 32.1%and 25.4%respectively,while the mAP has increased by 2.6 percentage points.With the reduction of FLOPs and parameters,the improved algorithm further enhances detection accuracy,offering theoretical research and technical support for deployment on embedded devices.

object detectionYOLOv7-Tinypassion fruitlightweight networkGMConv moduleODConv

涂智荣、凌海英、李帼、陆声链、钱婷婷、陈明

展开 >

教育区块链与智能技术教育部重点实验室(广西师范大学),广西桂林 541004

广西师范大学计算机科学与工程学院,广西桂林 541004

上海市农业科学院农业科技信息研究所,上海 201403

目标检测 YOLOv7-Tiny 百香果 轻量化网络 GMConv模块 ODConv

国家自然科学基金农业农村部长三角智慧农业技术重点实验室开放基金

61762013KSAT-YRD2023011

2024

广西师范大学学报(自然科学版)
广西师范大学

广西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.448
ISSN:1001-6600
年,卷(期):2024.42(5)