首页|头部姿态鲁棒的面部表情识别

头部姿态鲁棒的面部表情识别

扫码查看
针对面部表情识别中受头部姿态干扰导致识别性能低的问题,本文提出一种双分支特征融合(dual-branch feature fusion,DFF)方法,以增强面部表情识别的头部姿态鲁棒性.首先,在表情分支中,采用特征提取模块提取高维粗糙表情特征,再利用空间特征增强(spatial feature enhancement,SFE)模块增强高维表情特征在空间层面的信息交互,从而提升表情分支的表情特征提取能力.同时,在头部姿态分支中,利用预训练并固定权重的头部姿态特征提取(head pose feature extraction,HPFE)模块,提取出人脸表情图像的头部姿态特征.最后,将表情分支中的表情特征与头部姿态分支中的头部姿态特征逐元素相乘融合,实现特征间信息互补,得到对头部姿态鲁棒的情感表征.在RAF-DB和FERPlus数据集上针对2种头部姿态Pose(>30°)、Pose(>45°)进行实验评估:在RAF-DB数据集上识别准确率分别为89.98%、89.96%,在FERPlus数据集上分别为89.20%、87.94%.实验结果表明,本文提出的方法提高了存在头部姿态干扰时面部图像的表情识别准确率,对研究自然环境下面部表情识别具有一定贡献.
Head Pose-Robust Facial Expression Recognition
This paper proposes a Dual-branch Feature Fusion(DFF)method to enhance the robustness of head posture in facial expression recognition,addressing the issue of low recognition performance caused by head posture interference.Firstly,in the expression branch,high-dimensional rough semantic features are extracted using the ResNet18 backbone network.Then,the Spatial Feature Enhancement(SFE)module is employed to facilitate information interaction among high-level semantic features at the spatial level,thereby improving the expression feature extraction capability.Meanwhile,in the head pose branch,head pose features are extracted using the Head Pose Feature Extraction(HPFE),which is pre-trained on the head pose dataset 300W_LP with fixed weights.Finally,the expression features in the expression branch and the head pose features in the head pose branch are fused element-by-element to attain complementary information and establish a pose-robust emotional representation.The proposed method is evaluated on two widely-used datasets:RAF-DB dataset and FERPlus dataset.On the Pose Variation test set,the recognition accuracy of the two head poses(Pose>30° and Pose>45°)is 89.98%and 89.96%on the RAF-DB dataset,and 89.20%and 87.94%on FERPlus dataset,respectively.The experimental results show that the method proposed in this paper improves the accuracy of facial expression recognition in images under head posture interference,which is of great significance for research on facial expression recognition in natural environments.

expression recognitionhead posturefeature extractionrobustnessdeep learning

侯海燕、谭玉枚、宋树祥、夏海英

展开 >

广西师范大学电子与信息工程学院/集成电路学院,广西桂林 541004

广西师范大学计算机科学与工程学院,广西桂林 541004

表情识别 头部姿态 特征提取 鲁棒性 深度学习

2024

广西师范大学学报(自然科学版)
广西师范大学

广西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.448
ISSN:1001-6600
年,卷(期):2024.42(6)