首页|基于多尺度注意力的器官图像分割方法

基于多尺度注意力的器官图像分割方法

扫码查看
图像分割技术是医学图像研究领域的重要分支,该技术有助于医生对癌症的诊断和治疗.为进一步提高图像分割的精确度,本文提出一种多尺度轴向注意力模型MAU-Net(multi-scale axial attention U-Net)用于器官图像分割.首先,该模型在编码器阶段采用深度残差网络来提取图像特征,提高模型泛化能力;其次,使用像素块融合模块(pixels fuse module,PFM)对编码器的特征信息进行再编码和线性增强,增强特征的位置信息提取能力;最后,在解码器间加入多分支轴向注意力模块(multi-branch axial attention module,MAM)来捕捉上下文信息,从而增强模型识别关键特征信息能力.在Synapse、ACDC、SegTHOR等多个多器官图像数据集上的实验结果表明,MAU-Net在器官识别和边缘预测方面均能实现更好的效果.
Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation
Image segmentation technology is an important branch in the field of medical image research,and this technology helps doctors diagnose and treat cancer.In order to further improve the accuracy of image segmentation,a multi-scale axial attention model MAU-Net(multi-scale axial attention U-Net)is proposed in this paper for organ segmentation.Firstly,the model uses a deep residual network to extract image features in the encoder stage to improve the model's generalization ability.Secondly,a pixel fusion module(PFM)is added to the decoder to enhance the ability to extract feature position information by re-encoding and linearly enhancing the feature information of the encoder.Finally,a multi-branch axial attention module(MAM)is added between the decoders to capture contextual information and enhance the ability to identify key feature information.Experimental results on multiple multi-organ image data sets such as Synapse,ACDC,and SegTHOR show that MAU-Net can achieve better results in both organ recognition and edge prediction.

image segmentationorgan segmentationattention mechanismthoracic and abdominal organsdeep learning

卢家辉、陈庆锋、王文广、余谦、何乃旭、韩宗钊

展开 >

广西大学计算机与电子信息学院,广西南宁 530004

广西壮族自治区烟草公司桂林市公司,广西桂林 541004

图像分割 器官分割 注意力机制 胸腹部器官 深度学习

2024

广西师范大学学报(自然科学版)
广西师范大学

广西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.448
ISSN:1001-6600
年,卷(期):2024.42(6)