首页|基于知识图谱的电力设备缺陷问答系统研究

基于知识图谱的电力设备缺陷问答系统研究

扫码查看
电力设备的缺陷处理工作主要依赖于处理人员自身的知识储备和经验,但由于缺乏完善的历史缺陷知识库辅助,经验知识相对不足的人员无法有效借鉴前人经验,难免会出现决策失误的情况,进而影响电力设备的消缺工作.针对以上问题,本文提出基于电力设备缺陷知识图谱的问答系统实现方法.首先对设备缺陷问答系统进行需求分析,并设计系统架构;然后分别建立问句实体识别模型、问句意图识别模型、查询语句生成模型对问句进行语义解析;最后基于电力设备缺陷知识图谱,构建电力设备缺陷问答系统.问句实体识别结果和问句意图识别结果表明,采用改进算法的各项指标均有较大提升:在问句实体识别方面,精确率、召回率和F1值在整体上分别达到92.34%、97.65%、94.92%;在问句意图识别方面,准确率、精确率、召回率和F1值分别达到82.17%、85.38%、82.36%和83.84%.问答系统功能的测试也证明该系统可以很好地应用于辅助电力设备的缺陷消除过程,快速提升缺陷维修策略制定的准确性和缺陷设备的消缺效率,促进电力系统安全平稳运行.
Research on Power Equipment Defect Question Answering System Based on Knowledge Graph
The defect handling work of power equipment mainly depends on the knowledge reserve and experience of the handling personnel.However,due to the lack of assistance of a perfect historical defect knowledge base,people with relatively insufficient experience and knowledge cannot effectively learn from the experience of the predecessors,and it is inevitable that there will be mistakes in decision-making.This situation,which in turn affects the elimination of power equipment.A question answering system implementation method based on power equipment defect knowledge graph is proposed to address the above issues.Firstly,the requirements of the equipment defect question answering system are analyzed,and the system architecture is designed.Then,the question entity recognition model,question intent recognition model,and query sentence generation are established respectively.The model parses the question sentence semantically.Finally,a power equipment defect question answering system is based on the power equipment defect knowledge graph.The results of question entity recognition and question intention recognition show that the indicators of the improved algorithm have been greatly improved.In the aspect of question entity recognition,the precision rate,recall rate and F1 reach 92.34%,97.65%and 95.36%,respectively.In the aspect of question intention recognition,the accuracy rate,precision rate,recall rate and F1 reach 82.17%,85.38%,82.36%and 80.56%,respectively.The function test of the question answering system also shows that the system can be well applied to the defect elimination process of power equipment.And the system can quickly improve the accuracy of defect,repair strategy formulation and the efficiency of defect elimination of defective equipment,and promote the safe and stable operation of the power system.

question answering systempower equipmentknowledge graphquestion entity recognitionquestion intent recognitionquery statement generation

陈鹏、邰彬、石英、金杨、孔力、许瑞文、汪进锋

展开 >

广东省电力装备可靠性企业重点实验室(广东电网有限责任公司电力科学研究院),广东 广州 510080

广东电网有限责任公司电力科学研究院,广东 广州 510080

武汉理工大学自动化学院,湖北武汉 430070

问答系统 电力设备 知识图谱 问句实体识别 问句意图识别 查询语句生成

2024

广西师范大学学报(自然科学版)
广西师范大学

广西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.448
ISSN:1001-6600
年,卷(期):2024.42(6)