首页|基于神经网络的SAR图像超分辨率重建技术研究

基于神经网络的SAR图像超分辨率重建技术研究

扫码查看
合成孔径雷达(SAR)图像在地形测绘、农作物监测等领域有重要作用.为改善SAR图像分辨率,本研究利用基于生成对抗网络(SRGAN)支持下的SAR图像超分辨率重建方式,改进模型加载数据结构,使用同一区域的哨兵一号(Sentinel-1A)雷达卫星SAR影像和高分三号卫星SAR影像形成训练模型的数据集,将哨兵一号雷达卫星SAR图像的地物细节提高到接近高分三号卫星SAR图像数据的级别.实验表明,该方法能提升极化方式为VV的哨兵一号雷达卫星SAR图像的地物细节.
Research on super-resolution reconstruction technique of SAR images based on neural network
Synthetic aperture radar(SAR)images play an important role in the fields of terrain mapping and crop phenology monitoring etc.In order to improve SAR image resolution,using the super-resolution reconstruction of SAR images supported by SRGAN,the model loading data structure is improved by use of Sentinel-1A radar satel-lite SAR images and GF-3 satellite SAR images of the same region to form the data set of training model,with the feature detail of Sentinel-1A radar satellite SAR images improved up to a level close to that of GF-3 satellite SAR image.The experiments show this method can enhance the feature detail of Sentinel-1A SAR images with the polar-isation mode of VV.

super-resolution generative adversarial networks(SRGAN)SAR imagessuper-resolution reconstruc-tion of image

韦雨岑、叶子毅、庾露

展开 >

广西水利电力勘测设计研究院有限责任公司,南宁 530023

河海大学,南京 210098

南宁师范大学,南宁 530001

生成对抗网络 SAR图像 图像超分辨率重建

广西水利厅科研

SK-2022-017

2024

广西水利水电
广西水利电力勘测设计研究院

广西水利水电

影响因子:0.135
ISSN:1003-1510
年,卷(期):2024.(2)
  • 7