首页|分布式光纤传感技术研究和应用的现状及未来

分布式光纤传感技术研究和应用的现状及未来

扫码查看
我国大型基础设施的建设规模已多年位居世界之首,分布式光纤传感技术(DOFS)作为大型基础设施健康状态实时监测最有潜力的技术,近年来得到了迅速发展。针对DOFS在技术和应用的突破上面临的挑战,在介绍DOFS各技术基本工作原理、发展历史、现状以及典型应用原理和方案等的基础上,对其工作新机理、系统设计方案、研究发展方向等进行了阐述和讨论。
Current Status and Future of Research and Applications for Distributed Fiber Optic Sensing Technology
Significance The construction scale of large-scale infrastructure in China has ranked first in the world for many years.Meanwhile,due to construction quality,using environment,natural disasters,and other factors,serious accidents occur frequently.Distributed optical fiber sensing technologies employ optical fibers as signal transmission medium and sensing units to realize continuous distributed measurement of external parameters along the optical fiber.Therefore,it is the most potential non-destructive monitoring technology for large-scale infrastructure health monitoring in real time.However,distributed fiber optic sensing technologies still face various challenges such as reliability,low cost,and intelligence as they move toward the market.Progress At present,distributed optical fiber sensing technologies that have caught extensive attention and research include optical time-domain reflectometer,coherent optical time-domain reflectometer,phase-sensitive optical time-domain reflectometer,optical frequency-domain reflectometer,Raman optical time-domain reflectometer,Brillouin scattering optical time-domain reflectometer,Brillouin optical time-domain analyzer,and optical interferometry.We focus on introducing their working principles,system basic structures,development history,current status,and major research institutions and manufacturers at home and abroad.Based on detailing the application requirements,principles,and methods of distributed optical fiber sensing technologies in communication system monitoring,power system monitoring,coal geology monitoring,oil and gas exploration,transportation field,transportation pipeline monitoring,aerospace equipment monitoring,and perimeter security,we provide several typical application cases.Conclusions and Prospects The future main directions of development are listed:1)Multi-mechanism integration system.Single sensing parameters make it difficult to represent the true state of the measured object,which can result in false reports and missed reports.Simultaneous measurement of multiple parameters can provide multidimensional and more comprehensive information,thereby more accurately identifying fault events.The key point of the fusion-type distributed optical fiber sensing technology is to employ different scattering lights to respond to different events in the optical fiber to achieve multi-parameter sensing.2)Specialty sensing fiber cable technology.By changing the fiber material,structure,and packaging,specialty optical fiber cables can overcome the limitations of distributed sensors based on ordinary single-mode optical fibers,and obtain engineering applications in specific sensing parameters and performance in specific fields and scenarios.3)Sensing signal processing and intelligent perception technology.Due to the weak intensity of scattered light compared to incident light,distributed sensing systems are limited by signal-to-noise ratio.This affects the measurement accuracy,monitoring distance,response speed,spatial resolution,and other key indicators of distributed sensing systems.Signal processing techniques to analyze and enhance collected data are important means to improve the performance of sensing systems.4)Communication-sensing fusion system.Technologies such as wavelength division multiplexing,polarization diversity,and coherent detection from optical communication systems are applied to distributed fiber optic sensing systems.Additionally,existing optical fiber communication systems can be adopted for synchronous sensing.These are crucial steps towards the practical applications of distributed fiber optic sensing systems.5)Distributed shape sensing technology.Leveraging distributed fiber optic sensing technology for shape sensing is an important development direction.6)Ocean state monitoring based on existing optical cables.Existing undersea optical communication networks are employed as sensing networks to achieve intelligent perception of the surrounding environment of the cables.This enables large-scale online monitoring and early warning capabilities with relatively low investment,thus providing rapid and accurate assurance for managing major maritime incidents and maritime disaster risks.

fiber opticsdistributed optical fiber sensing technologyoptical time domain reflectometeroptical frequency domain reflectometerinterferometric distributed optical fiber sensing

张旭苹、张益昕、王亮、余贶琭、刘波、尹国路、刘琨、李璇、李世念、丁传奇、汤玉泉、尚盈、王奕首、王晨、王峰、樊昕昱、孙琪真、谢尚然、吴慧娟、吴昊、王花平、赵志勇

展开 >

南京大学智能光感知与调控技术教育部重点实验室,江苏南京 210023

华中科技大学光学与电子信息学院,湖北武汉 430074

北京交通大学信息科学研究所,北京 100044

之江实验室光纤传感研究中心,浙江杭州 311100

重庆大学光电技术及系统教育部重点实验室,重庆 400044

天津大学精密仪器与光电子工程学院,天津 300072

中国电力科学研究院有限公司,北京 100192

中国煤炭地质总局勘查研究总院,北京 100039

中油奥博(成都)科技有限公司,四川成都 611731

中国科学院合肥物质科学研究院安徽光学精密机械研究所光子器件与材料安徽省重点实验室,安徽合肥 230031

齐鲁工业大学(山东省科学院),山东省科学院激光研究所,山东济南 250104

厦门大学航空航天学院,福建厦门 361005

上海交通大学电子信息与电气工程学院,区域光纤通信网与新型光通信系统国家重点实验室,上海 200240

北京理工大学光电学院,信息光子技术工信部重点实验室,北京 100081

电子科技大学光纤传感与通信教育部重点实验室,四川成都 611731

兰州大学土木工程与力学学院,甘肃兰州 730000

展开 >

光纤光学 分布式光纤传感技术 光时域反射仪 光频域反射仪 干涉型分布式光纤传感

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家重点研发计划国家自然科学基金重大仪器项目国家自然科学基金重大仪器项目装备预研项目国家自然科学基金区域联合重点支持项目国家自然科学基金区域联合重点支持项目

62175100619750766217510062005087619750226227523462275151621051112022YFB2903400616051014152780530601010104U2001601U21A20453

2024

光学学报
中国光学学会 中国科学院上海光学精密机械研究所

光学学报

CSTPCD北大核心
影响因子:1.931
ISSN:0253-2239
年,卷(期):2024.44(1)
  • 474