首页|基于条件对抗生成网络数据增强的相敏光时域反射仪模式识别

基于条件对抗生成网络数据增强的相敏光时域反射仪模式识别

扫码查看
本文针对光纤传感技术中相敏光时域反射仪(Φ-OTDR)数据采集受限的问题,提出了一种基于条件对抗生成网络(CGAN)的数据增强方法,用于在少量数据基础上生成大量训练样本。实验中采用Φ-OTDR完成数据采集,将采集到的真实数据作为CGAN的输入,网络通过自动提取信号特征,并在输入条件的帮助下生成逼真的信号数据。将生成数据和原始数据分别输入决策树、支持向量机、卷积神经网络等模型进行分类,实验结果显示,生成数据在各个分类器中的检测结果都得到了显著提升,有效提高了分类器模型的检测能力和性能,实现了Φ-OTDR模式的目标识别,并解决了数据采集困难的问题。本文研究为小样本检测提供了新的思路和方法,对其他光纤传感技术的应用具有借鉴意义。
Pattern Recognition of Phase-Sensitive Optical Time-Domain Reflectometer Based on Conditional Generative Adversarial Network Data Augmentation
Objective We aim to address limited data acquisition in fiber optic sensing technology,especially in phase-sensitive optical time-domain reflectometry.A data augmentation method based on conditional generative adversarial networks(GANs)is proposed to generate a large number of training samples and improve the detection capability and performance of the classifier model.Methods The experimental data collection is conducted using a phase-sensitive optical time-domain reflectometer(Φ-OTDR).First,the collected real data are adopted as input to the conditional GAN.The GAN model automatically extracts signal features and generates realistic signal data with the assistance of input conditions,with the specific experimental flow shown in Fig.7.Second,the generated data and original data are separately fed into classifiers such as decision trees,support vector machines,and convolutional neural networks for classification.By comparing the detection results of the generated and raw data across different classifiers,the effectiveness of the data augmentation method is evaluated,and the specific comparison results are shown in Fig.12.This comprehensive approach can assess the influence of the generated data on the classifier performance to address limited data acquisition in fiber optic sensing technology.Results and Discussions The experimental results demonstrate that the detection results of the generated data significantly improve across decision trees,support vector machines,and convolutional neural networks.The generated data enhance the detection capability and performance of the classifier models,achieving the target identification inΦ-OTDR.Furthermore,improvements in the conditional GAN can generate more realistic signal data,further enhancing the model performance.Conclusions We successfully address the data acquisition limitations in Φ-OTDR by a data augmentation method based on conditional GAN.The generated data improve the detection capability and performance of the classifier models.The research findings provide new insights and methods for small-sample detection,and also valuable references for the applications of other fiber optic sensing technologies.

optical fiber sensingphase-sensitive optical time-domain reflectometerdata augmentationdeep learningconditional generative adversarial network

张印、胡挺、李猷兴、王剑、苑立波

展开 >

桂林电子科技大学光电工程学院,广西桂林 541004

哈尔滨工程大学物理与光电工程学院,黑龙江哈尔滨 150006

光纤传感 相敏光时域反射仪 数据增强 深度学习 条件对抗生成网络

国家自然科学基金国家自然科学基金广西八桂学者资助专项

61827819622650042019A38

2024

光学学报
中国光学学会 中国科学院上海光学精密机械研究所

光学学报

CSTPCD北大核心
影响因子:1.931
ISSN:0253-2239
年,卷(期):2024.44(1)
  • 24