首页|热原子光钟原子气室高精度无磁温控设计

热原子光钟原子气室高精度无磁温控设计

扫码查看
热原子光钟是小型化光钟的重要发展方向,原子气室作为热原子光钟的核心,其无磁温控是热原子光钟的关键技术之一,温度波动及加热引入的磁场噪声都会影响热原子光钟的稳定性.针对铷原子双光子跃迁的热原子光钟原子气室高精度无磁温控的需求,设计了一种双层无磁温控系统,采用四线制采集温度信息,模拟PID实现反馈温度控制,加热元器件使用双层蛇形加热膜设计,减小因加热电流产生的磁场扰动.实验结果表明,无磁温控制系统在原子气室的工作温度为80 ℃时,4小时温度稳定性可达0.004 ℃,磁场噪声小于100 nT,满足热原子光钟的设计需求,保证热原子光钟实验顺利进行.
High Precision Nonmagnetic Temperature Control Design of Atomic Gas Chamber for Warm Atomic Optical Clock
The warm atomic optical clock is an important development direction of miniaturized optical clock.As the core of the warm atomic optical clock,the non-magnetic temperature control is one of the key technologies of the warm atomic optical clock.The temperature fluctuation and magnetic field noise introduced by heating will affect the stability of the warm atomic optical clock.In view of the high-precision non-magnetic temperature control requirements of the warm atomic optical clock with cesium double photon transition,a double layer non-magnetic temperature control system is designed in this paper.The four-wire system is used to collect temperature information,and the PID is simulated to realize feedback temperature control.The heating components are designed with double snake heating film to reduce the magnetic field disturbance caused by heating current.Experimental results show that the non-magnetic temperature control system has a four-hour temperature stability of 0.004 ℃ when the working temperature of the atomic gas chamber is 80 ℃,and the magnetic field noise is less than 100 nT,which meets the design requirements of the warm atomic optical clock and ensures the smooth progress of the warm atomic optical clock experiment.

non-magnetic heatingatomic gas chamberwarm atomic light clockhigh precision temperature controlstability

胡帅、王斌、李军强、陈新文、周嘉鹏、毛海岑

展开 >

华中光电技术研究所—武汉光电国家研究中心,湖北武汉 430223

中国科学院大学,北京 100049

无磁加热 原子气室 热原子光钟 高精度温控 稳定性

2024

光学与光电技术
华中光电技术研究所 武汉光电国家实验室 湖北省光学学会

光学与光电技术

CSTPCD
影响因子:0.351
ISSN:1672-3392
年,卷(期):2024.22(1)
  • 18