首页|基于注意力融合的目标跟踪算法

基于注意力融合的目标跟踪算法

扫码查看
针对基于孪生网络的目标跟踪算法存在抗干扰能力弱、鲁棒性差等问题,在SiamCAR基础上提出通道和空间注意力融合的目标跟踪算法.在特征提取子网络和分类回归子网络之间级联改进后的高效通道注意力和空间注意力模块,加强网络对互相关后响应图中重要通道特征和位置特征的关注,同时抑制不重要的特征信息.在OTB100上,所提算法在背景杂乱挑战下成功率和精度相比SiamCAR分别提高了3.1%和2.8%;在VOT2018上,所提算法的鲁棒性和期望平均重叠率相比SiamCAR分别提高了4.9%和2.2%.实验结果表明,所提算法增强了跟踪器的鲁棒性,提升了跟踪器在复杂场景下的跟踪效果.
Object Tracking Algorithm Based on Attention Fusion
In order to solve the problems of weak anti-interference ability and poor robustness of the current target tracking algorithm based on Siamese network,a tracking algorithm which uses channel and spatial attention fusion based on SiamCAR is proposed.The improved efficient channel attention module and spatial attention module are cascaded between the feature extraction subnetwork and the classification regression subnetwork,so as to strengthen the network's attention to the important channel features and location features in the response map after cross-correlation,and suppress the unimportant feature information.On OTB100,the success rate and accuracy of the proposed algorithm are improved by 3.1%and 2.8%compared with SiamCAR under the challenge of background clutter,respectively.And the robustness and expected average overlap rate of the proposed algorithm are increased by 4.9%and 2.2%respectively compared with SiamCAR in VOT2018.Experimental results show that the proposed algorithm enhances the robustness of the tracker and improves the tracking effect of the tracker in complex scenes.

object trackingsiamese networkdeep learningchannel attentionspatial attention

蒋汇丰、王栋、高山

展开 >

华中光电技术研究所-武汉光电国家研究中心,湖北武汉 430223

目标跟踪 孪生网络 深度学习 通道注意力 空间注意力

2024

光学与光电技术
华中光电技术研究所 武汉光电国家实验室 湖北省光学学会

光学与光电技术

CSTPCD
影响因子:0.351
ISSN:1672-3392
年,卷(期):2024.22(2)
  • 22