首页|一种改进经验模态的原子钟数据去噪算法

一种改进经验模态的原子钟数据去噪算法

扫码查看
原子钟受仪器内部硬件设施及外界扰动等影响,钟组频差数据会出现噪声和粗差值,严重影响原子钟信号的稳定性和准确度,因此提出了一种改进原子钟去噪算法——改进EMD-AKF算法.将原子钟数据依据 3σ准则进行粗差值剔除后,结合经验模态分解和自适应卡尔曼滤波对预处理后的数据进行分析,根据皮尔逊相关系数和自相关系数确定经验模态分解后IMF分量中的主导成分,对噪声主导的IMF分量进行自适应卡尔曼滤波去噪,最终重组出新的原子钟钟差数据.通过对处理前后的钟差数据进行稳定性评估得出,改进EMD-AKF算法使得原子钟信号的频率稳定度提升一个量级,极大降低了计数器等仪器噪声对原子钟频差数据的影响.
An Improved Empirical Mode Data Denoising Algorithm for Atomic Clocks
Affected by the internal hardware facilities of the instrument and external disturbances,the clock group frequency difference data of the atomic clocks will have noise and coarse difference values,which seriously affect the stability and accuracy of the atomic clock signals.So an improved denoising algorithm for atomic clocks is proposed,that is the improved EMD-AKF algorithm.After the atomic clock data are removed from the coarse difference according to the 3σ criteria,the preprocessed data are analyzed by combining empirical mode decomposition and adaptive Kalman filtering.The dominant components in the IMF components after empirical mode decomposition are determined according to the Pearson's correlation coefficient and the autocorrelation coefficient.The noise-dominant IMF components are denoised by adaptive Kalman filtering,and the new atomic clock clock difference data are finally reconstructed.The stability assessment of the clock difference data before and after processing shows that the improved EMD-AKF algorithm improves the frequency stability of the atomic clock signal by one order of magnitude,and greatly reduces the influence of the noise of counters and other instruments on the frequency difference data of the atomic clock.

empirical mode decompositionadaptive Kalman filteringatomic clock difference datacesium atomic clockAllan variance

魏文晓、马晖、姜浩楠、肖涵、戴幻尧

展开 >

中国人民解放军 63892部队,河南洛阳 471003

经验模态分解 自适应卡尔曼滤波 原子钟钟差数据 铯原子钟 阿伦方差

2024

光学与光电技术
华中光电技术研究所 武汉光电国家实验室 湖北省光学学会

光学与光电技术

CSTPCD
影响因子:0.351
ISSN:1672-3392
年,卷(期):2024.22(4)