首页|基于边缘技术和PowerNet网络的输电线缺陷检测

基于边缘技术和PowerNet网络的输电线缺陷检测

扫码查看
针对传统输电线检测易受大雾天气影响、检测精度和效率低等问题,提出了一种融合多模块去雾网络、网络分区策略和PowerNet网络模型的输电线路高精度、高效率检测方法.首先,在端对端学习的基础上,设计了一种多模块融合的去雾网络,解决了因雾导致输电线缺陷检测精度低的问题.然后,为了提高边缘技术的巡检效率,设计了一种基于二进制粒子群的网络分区策略.进而提出PowerNet网络模型来解决输电线缺陷检测精度低的问题.最后,通过实验对所提出的方法进行效果验证和数据分析,实验结果表明:该方法具有较高的缺陷检测准确率和实时性,其精度和效率分别可以达到 99.3%和 28 ms/张,具有较高的工程实用价值.
Defect Detection on Power Lines Based on Edge Technology and Deep Network
The traditional transmission line detection is easy to be affected by foggy weather,and the detection accuracy and efficiency are low.In this paper,a high-precision and high-efficiency detection method is proposed,which integrates multi-module de-fog network,network partitioning strategy and PowerNet network model.Firstly,based on the end-to-end learning,a multi-module defogging network is designed to solve the problem of low detection accuracy of transmission line defects caused by fog.Then,in order to improve the inspection efficiency of edge technology,a network partitioning strategy based on binary particle swarm is designed.On the basis of these,PowerNet network model is proposed to solve the problem of low accuracy of transmission line defect detection.Finally,the method proposed in this paper is validated and analyzed by experiments.The experimental results show that the proposed method has high accuracy and real-time defect detection,and its accuracy and efficiency can reach 99.3%and 28 ms photo,respectively.It can be seen that the method proposed in this paper has high engineering practical value.

power transmission linedefect detectionimage defoggingnetwork partitiondetection accuracy

陆晓、吴强、蒋承伶、马洲俊、王茂飞、单华

展开 >

国网江苏省电力有限公司,江苏南京 210024

国网江苏省电力有限公司泰州供电分公司,江苏泰州 225300

江苏方天电力技术有限公司,江苏南京 211100

输电线 缺陷检测 图像去雾 网络分区 检测精度

国网江苏电力有限公司科技项目资助

J2022004

2024

光学与光电技术
华中光电技术研究所 武汉光电国家实验室 湖北省光学学会

光学与光电技术

CSTPCD
影响因子:0.351
ISSN:1672-3392
年,卷(期):2024.22(5)
  • 7