首页|光纤振动深度学习算法在模式识别中的性能优化

光纤振动深度学习算法在模式识别中的性能优化

扫码查看
为实现光缆实时检测以及振动风险判断,需可靠识别光纤振动模式,研究了光纤振动深度学习算法在模式识别中的性能优化方法.该方法利用分布式光纤传感器采集振动信号,并依据传感器的瑞利散射光信号相位信息获取光强信号,将其转换成电信号;选择加窗分帧方法处理该信号后,利用局部特征尺度分解方法获取信号的多特征参量后,将其输入一维卷积神经网络中,通过模型学习输出光纤振动模式识别结果.测试结果显示:该方法可获取不同振动信号的频率变化情况,加窗分帧处理后振动信号频率在 0~400 Hz之间波动,相位不超过 20 rad,准确地提取出信号主瓣峰峰值和频谱特征,并且呈现出其随频率的变化趋势,清晰地呈现出不同频率成分的强度和分布.可以有效完成光纤振动模式识别,可判断光缆振动信号深度,辅助优化光缆运行故障检测与风险判断效果.
Performance Optimization of Fiber Optic Vibration Deep Learning Algorithm in Pattern Recognition
To achieve real-time detection of optical cables and vibration risk assessment,it is necessary to reliably identify fiber optic vibration patterns.Therefore,a performance optimization method for fiber optic vibration deep learning algorithm in pattern recognition was studied.This method utilizes distributed fiber optic sensors to collect vibration signals,and obtains light intensity signals based on the phase information of the Rayleigh scattering light signals from the sensors,converting them into electrical signals;After selecting the windowing and framing method to process the signal,the local feature scale decomposition method is used to obtain multiple feature parameters of the signal,which are then input into a one-dimensional convolutional neural network.The model learns and outputs the fiber vibration pattern recognition results.The test results show that this method can obtain the frequency changes of different vibration signals.After windowing and frame processing,the frequency of the vibration signal fluctuates between 0~400 Hz,and the phase does not exceed 20 rad.It accurately extracts the peak to peak value and spectral characteristics of the signal's main lobe,and presents its trend with frequency,clearly showing the intensity and distribution of different frequency components.The significance lies in the effective completion of fiber optic vibration pattern recognition,which can determine the depth of fiber optic cable vibration signals and assist in optimizing the effectiveness of fiber optic cable operation fault detection and risk assessment.

fiber optic vibrationdeep learning algorithmspattern recognitionperformance optimizationlight intensity signalmultiple characteristic parameters

刘浩、杨剑、史然、王新功

展开 >

内蒙古电力(集团)有限责任公司呼和浩特供电分公司,内蒙古呼和浩特 010020

光纤振动 深度学习算法 模式识别 性能优化 光强信号 多特征参量

内蒙古电力(集团)有限责任公司 2023年科技项目

2023-5-1

2024

光学与光电技术
华中光电技术研究所 武汉光电国家实验室 湖北省光学学会

光学与光电技术

CSTPCD
影响因子:0.351
ISSN:1672-3392
年,卷(期):2024.22(5)
  • 14