首页|Higher-order expansions of powered extremes of logarithmic general error distribution

Higher-order expansions of powered extremes of logarithmic general error distribution

扫码查看
In this paper,Let Mn denote the maximum of logarithmic general error distribution with parameter v ≥ 1.Higher-order expansions for distributions of powered extremes Mpn are derived under an optimal choice of normalizing constants.It is shown that Mpn,when v=1,converges to the Fréchet extreme value distribution at the rate of 1/n,and if v>1 then Mpn converges to the Gumbel extreme value distribution at the rate of(log log n)2/(log n)1-1/v.

logarithmic general error distributionconvergence ratehigher-order expansionpowered ex-treme

TAN Xiao-feng、LI Li-hui

展开 >

School of Mathematics and Statistics,Southwest University,Chongqing 400715,China

2024

高校应用数学学报B辑(英文版)
浙江大学 中国工业与应用数学学会

高校应用数学学报B辑(英文版)

影响因子:0.146
ISSN:1005-1031
年,卷(期):2024.39(1)
  • 19