首页|The tangential k-Cauchy-Fueter type operator and Penrose type integral formula on the generalized complex Heisenberg group

The tangential k-Cauchy-Fueter type operator and Penrose type integral formula on the generalized complex Heisenberg group

扫码查看
The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy-Riemann operator and CR functions on the Heisenberg group in the the-ory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We inves-tigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.

the generalized complex Heisenberg groupthe tangential k-Cauchy-Fueter type operatorPenrose-type integral formula

REN Guang-zhen、SHI Yun、KANG Qian-qian

展开 >

Department of Mathematics,Zhejiang International Studies University,Hangzhou 310023,China

Department of Mathematics,Zhejiang University of Science and Technology,Hangzhou 310023,China

National Nature Science Foundation in ChinaNational Nature Science Foundation in ChinaNational Nature Science Foundation in ChinaNature Science Foundation of Zhejiang provinceDomestic Visiting Scholar Teacher Professional Development Project

121015641197142511801508LY22A010013FX2021042

2024

高校应用数学学报B辑(英文版)
浙江大学 中国工业与应用数学学会

高校应用数学学报B辑(英文版)

影响因子:0.146
ISSN:1005-1031
年,卷(期):2024.39(1)
  • 14