首页|考虑碳排放优化的多层随机模型预测的配电网新能源电压控制方法

考虑碳排放优化的多层随机模型预测的配电网新能源电压控制方法

扫码查看
"电力零碳"是实现"双碳"目标的重要支撑,采用可再生能源发电是实现"电力零碳"的重要举措.电力高比例可再生能源接入配电网给配电网电压控制带来了巨大挑战.同时,风能场站等可再生能源具有高随机性和间歇性等特点,传统电压控制方法在高比例可再生能源渗透的情景下无法取得满意的控制效果.为解决以上电压控制问题,提出了一种基于双层随机模型预测控制的电压控制方法.在所提方法中,变压器和并联电容在上层以小时为周期进行控制,而下层控制器以15 min为控制周期对分布式发电(distributed generation,DG)的输出进行调节.所提方法综合了模型预测控制和随机优化的优点,能实现有效的电压控制效果,并降低碳排放.基于改进IEEE 33节点系统中的仿真结果表明,所提方法能有效协调不同的电压调节设备,在高随机性可再生能源渗透下能取得良好的电压控制效果,保证配电网运行的经济性,有效降低配电网络运行的碳排放.
Renewable voltage control method for distribution networks based on multi-layer stochastic model prediction
"Zero-carbon electricity"is a crucial support for achieving the"dual carbon"goals,and adopting renewable energy generation is an important measure to achieve"zero-carbon electricity".The integration of a high proportion of renewable energy into distribution networks presents significant challenges for voltage control.Additionally,renewable energy such as wind farms is characterized by high randomness and intermittency,making traditional voltage control methods ineffective under scenarios with high renewable energy penetration.To address these voltage control issues,this paper proposes a voltage control method based on a dual-layer stochastic model predictive control(MPC)approach.In the proposed method,transformers and shunt capacitors are controlled at the upper layer on an hourly basis,while the lower layer controller adjusts the output of distributed generation(DG)with a 15-minute control cycle.This method combines the advantages of MPC and stochastic optimization,achieving effective voltage control and reducing carbon emissions.Simulation results based on an improved IEEE 33 bus system demonstrate that the proposed method can effectively coordinate different voltage regulation devices,achieve good voltage control effects under high randomness of renewable energy penetration,ensure the economic operation of the distribution network,and significantly reduce the carbon emissions of the distribution network.

distribution networkvoltage controlcarbon emissionstochastic model predictive controldistributed generation

宋美琪、李洪全、武浩、范岳、张鹏、商和龙、丁浩、范宏进

展开 >

国网冀北电力有限公司智能配网中心,河北 秦皇岛 066100

山东电工电气集团新能科技有限公司,山东 济南 250101

山东大学电气工程学院,山东 济南 250061

配电网 电压控制 碳排放 随机模型预测控制 分布式发电

2025

供用电
中国电机工程学会城市供电专业委员会,上海市电力公司市区供电公司

供用电

北大核心
影响因子:0.856
ISSN:1006-6357
年,卷(期):2025.42(1)