首页|变压器振动特征值分类算法优化研究

变压器振动特征值分类算法优化研究

扫码查看
在基于振动特征值法的电力变压器故障检测领域,目前广泛采用基频占比、总谐波畸变率等诊断指标,然而变压器在正常运行时,由于激励源的非线性特性和机械部件共振的影响,将产生200、300 Hz等倍频振动信号,降低了特征值对正常、故障工况的区分度.为解决上述问题,文中搜集了各电压等级变压器正常、故障工况的56组振动数据,检验了传统特征值的分类效果;搭建了3种电压等级的三相电力变压器有限元仿真模型,分析了油箱表面振动分布特征和倍频分量成因;优化了基频占比、总谐波畸变率特征值的计算式,提升了两特征值的分类效果.检验结果表明,优化后两特征值的分类效果分别提升了47%、28%.
Research on Classification Algorithm Optimization of Transformer Vibration Eigenvalues
In the field of fault detection of power transformer based on the vibration signal eigenvalues,such diagnos-tic indexes as fundamental frequency ratio and total harmonics distortion are widely used at present.However,in case of normal operation of transformer,the multi-frequency signals such as 200 Hz or 300 Hz will be generated due to nonlinear effect of vibration source and resonance of mechanical parts,which reduces the classification of eigenval-ues to the normal and faulty conditions.For solving above problem,56 sets of vibration data of transformers at differ-ent voltage levels and at normal and fault conditions are collected,and the classification effect of traditional eigenval-ues is tested.Moreover,the finite element simulation model of three-phase power transformers with three voltage lev-els is set up,the vibration distribution characteristics on the oil tank surface and the causes of multi-frequency com-ponents are analyzed.The calculation formula of the fundamental frequency ratio and total harmonics distortion is op-timized,the classification effect of the two eigenvalues is improved.The Test results show that the classification effect of the two eigenvalues after optimization is improved by 47%and 28%,respectively.

transformervibrationmulti-frequencyeigenvalueoptimization

黄建业、杜厚贤、林爽、刘冰倩、杨彦、马国明

展开 >

国网福建省电力有限公司电力科学研究院,福州 350007

华北电力大学新能源电力系统国家重点实验室,北京 102206

变压器 振动 倍频 特征值 优化

2025

高压电器
西安高压电器研究所

高压电器

北大核心
影响因子:1.354
ISSN:1001-1609
年,卷(期):2025.61(1)