首页|基于降阶模型的热过程快速预测方法研究

基于降阶模型的热过程快速预测方法研究

扫码查看
为了对热过程控制进行设计,常采用"热流耦合"的计算流体力学(CFD)方法对热过程进行模拟,为了得到合理的热控制方案,常需要反复的CFD分析,成本较高,而且不方便实时调整控制方案.为解决这一问题,基于Volterra级数降阶模型,提出了一种热过程快速分析预测的方法,为热过程控制策略制定及控制参数确定提供了一种工具.该方法根据在阶跃温度加热条件下热过程系统的响应,辨识Volterra级数降阶模型的核函数,构建系统温度与控制条件之间关系的降阶模型,进而快速计算不同控制过程下系统的温度响应.该降阶模型可以用来实时预测系统的加热过程和优化系统的热过程控制方法.算例的结果表明:采用Volterra级数降阶模型得到的系统温度响应与采用CFD方法得到的响应一致,且采用降阶模型方法进行热过程预测和控制优化的效率非常高.
Research on Rapid Prediction Method of Thermal Process Based on Reduced Order Model
In order to design the thermal process control,the computational fluid dynamics(CFD)method with"heat flow coupling"is often used to simulate the thermal process.In order to obtain a reasonable thermal control scheme,repeated CFD analysis is often required,the cost is high and it is not convenient to adjust the control scheme in real time.To solve this problem,a method for rapid analysis and prediction of thermal process is proposed based on Volterra series reduced-order model,it provides a instrument for the formulation of thermal process con-trol strategy and the determination of control parameters.According to the response of thermal process system under step temperature heating condition,the kernel function of Volterra series reduced-order model is identified,the reduced-order model of the relationship between system temperature and control conditions is constructed,then the temperature response of the system under different control processes can be calcu-lated quickly.The reduced-order model can be used to predict the heating process of the system in real time and optimize the thermal process control method.The result of numerical example shows that the temperature response obtained by Volterra series reduced-order model is con-sistent with that obtained by CFD method,and the efficiency of reduced-order model method for thermal process prediction and control optimi-zation is very high.

thermalrapid predictionreduced-order modelVolterra seriesoptimize

张光鹏、张珺、李文超、齐健

展开 >

中北大学航空宇航学院,山西太原 030051

太原学院数学系,山西太原 030001

热工 快速预测 降阶模型 Volterra级数 优化

国家自然科学基金资助项目

51775518

2024

工业加热
西安电炉研究所有限公司

工业加热

CSTPCD
影响因子:0.257
ISSN:1002-1639
年,卷(期):2024.53(1)
  • 13