首页|空气预热条件下工业级无焰燃烧数值模拟研究

空气预热条件下工业级无焰燃烧数值模拟研究

扫码查看
目前,研究者对无焰燃烧的探究大多选用实验室级别燃烧器,为进一步加强无焰燃烧在工业生产领域中的应用,本研究选用工业级燃烧器为研究对象,主要开展空气预热条件下的甲烷无焰燃烧数值模拟研究,探究空气预热温度及燃烧器结构变化对无焰燃烧的影响.数值模拟结果表明:①高温预热空气较常温空气实现无焰燃烧时更具优势,一方面,高温预热空气对高温烟气的回收利用有效节约了能源消耗,另一方面,炉内温度均匀性随空气预热温度升高出现明显改善,空气预热温度为1 123 K时无焰燃烧状态最佳,此时炉内的峰值温度在1 400 K左右,平均温度在1 300 K左右.②本文所用燃烧器在实现无焰燃烧时需满足一定的射流动量(临界射流动量)和热功率输入.原始燃烧器实现无焰燃烧所需热功率为130 kW以上,通过两种燃烧器喷嘴结构的两种优化,实现无焰燃烧所需热功率明显降低,可实现高效的燃烧.
Numerical Simulation of Industrial Grade Flameless Combustion under Air Preheating Conditions
In order to further enhance the application of flameless combustion in industrial production,this study uses an industrial-grade burn-er as the research object and carries out a numerical simulation of flameless combustion of methane under air preheating conditions to investi-gate the effects of air preheating temperature and burner structure changes on flameless combustion.The results show that,firstly,high tem-perature preheated air is more advantageous than ambient air for flameless combustion,because on the one hand,the high temperature prehea-ted air saves energy consumption by recycling high temperature flue gas,and on the other hand,the temperature uniformity in the furnace im-proves significantly with the increase of air preheating temperature.The average temperature is around 1 300 K.Secondly,the burner used in this paper needs to meet a certain jet flow(critical jet flow)and thermal power input to achieve flameless combustion.The original burner re-quired a thermal power of 130 kW or more to achieve flameless combustion,but the two optimised burner nozzle structures required significant-ly less thermal power to achieve flameless combustion

flameless combustionumerical simulationfurnace temperature distributionpreheated airthermal power

李凯、张亚竹、黄军、刘丛熙

展开 >

内蒙古科技大学 能源与环境学院,内蒙古 包头 014010

无焰燃烧 数值模拟 炉温分布 空气预热 热功率

内蒙古自治区自然科学基金

2022MS05024

2024

工业加热
西安电炉研究所有限公司

工业加热

CSTPCD
影响因子:0.257
ISSN:1002-1639
年,卷(期):2024.53(5)
  • 16