首页|基于多智能体的分布式热处理控制系统的设计

基于多智能体的分布式热处理控制系统的设计

扫码查看
针对当前热处理炉存在的工作效率低、能量消耗过多等问题,提出了基于多智能体的热处理炉温控制系统的设计方案.该系统采用全自动控制方式,结合人工智能,通过机器学习实现对热处理炉温度的有效控制.具体来说,系统利用多智能体技术,其中包括分布式电源、温度控制器和通过通信路径进行数据交换的网关配置等关键组件,以优化控制结构,提高工作效率和加工质量,并达到节能减排的目标.系统设计包含多个智能体,分别负责不同的功能,如传感器智能体、执行器智能体、温度控制器智能体和继电器智能体等.这些智能体通过数据收集、分析和指令执行,实现对热处理炉温的精确控制.为实现这一目标,系统采用了机器学习技术来分析加工数据和监视过程变量,通过模式识别检测加工过程中的异常,并进行相应调整.此外,智能控制技术自动调节温度和保持时间,以达到预设目标;物联网技术则用于设备间的网络连接,收集机器运行情况、产品属性和温度数据.
Design of an Automated Heat Treatment System
It addresses the issues of low operational efficiency and excessive energy consumption in current heat treatment furnaces by proposing a design for a heat treatment furnace temperature control system based on multi-agent technology.The system employs a fully automated control approach,integrating artificial intelligence and utilizing machine learning to achieve effective control of the furnace temperature.Specifically,the system leverages multi-agent technology,including key components such as distributed power sources,temperature controllers,and gate-ways for data exchange through communication pathways,to optimize control structures,improve operational efficiency,enhance processing quality,and achieve energy savings and emissions reduction.The system design includes multiple agents,each responsible for different func-tions,such as sensor agents,actuator agents,temperature controller agents,and relay agents.These agents work together through data collec-tion,analysis,and execution of commands to precisely control the furnace temperature.To achieve this goal,the system uses machine learn-ing techniques to analyze processing data and monitor process variables,detecting anomalies through pattern recognition and making necessary adjustments.Additionally,intelligent control technology automatically adjusts temperature and holding time to meet preset targets,while Inter-net of Things(IoT)technology connects devices,collects operational data,product attributes,and temperature data.

automation systemheat treatmentmonitor system

郑翔宇、徐勇

展开 >

南昌航空大学 航空制造工程学院,江西 南昌 330000

多智能体 热处理 监控系统

2024

工业加热
西安电炉研究所有限公司

工业加热

CSTPCD
影响因子:0.257
ISSN:1002-1639
年,卷(期):2024.53(10)