首页|基于模糊神经网络的机械轴承故障诊断方法研究

基于模糊神经网络的机械轴承故障诊断方法研究

扫码查看
针对机械轴承智能化故障诊断的需求,提出了一种融合模糊逻辑和神经网络的故障诊断方法.利用EMD-AR谱提取机械故障振动信号特征,将提取的特征向量作为训练样本库和检验样本库,运用模糊神经网络实现故障诊断.最后设计机械轴承故障诊断专家系统,并通过轴承故障诊断实例,验证了智能诊断技术在机械故障诊断领域可以较好地满足诊断需求.
Research on Mechanical Bearing Fault Diagnosis Method Based on Fuzzy Neural Network
Aiming at the requirement of intelligent fault diagnosis of mechanical bearing,a fault diagnosis method based on fuzzy logic and neural network is proposed in this paper.The feature of mechanical fault vibration signal was extracted by using EMD-AR spectrum,and the extracted feature vector is used as training sample library and test sample library.Fuzzy neural network is used to realize fault diagnosis.Finally,the expert system of mechanical bearing fault diagnosis is designed,and the bearing fault diagnosis example is used to verify that the intelligent diagnosis technology could meet the requirements of mechanical fault diagnosis.

fault diagnosismechanical bearingsfuzzy neural networkEMD-AR spectrumexpert system

王学进、张嘉雨、董海迪

展开 >

中国人民解放军92578部队,北京 100161

海军工程大学兵器工程学院,湖北武汉 430030

故障诊断 机械轴承 模糊神经网络 EMD-AR谱 专家系统

国家自然科学基金

62101579

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(1)
  • 10