首页|基于多源卫星XCO2数据的融合与优化

基于多源卫星XCO2数据的融合与优化

扫码查看
随着卫星观测技术的不断发展,包括CO2在内的越来越多的大气成分数据可供获取.多源卫星数据融合是一种有效的手段,可以提高数据的准确性以及时空分辨率.基于压缩感知以及深度学习技术对GOSAT、OCO-2、OCO-3三颗被动式探测卫星的遥感观测数据进行了融合与优化.压缩感知用于生成初始的融合数据,深度学习模型进一步强化CO2数据的季节循环特征,对初始融合数据进一步优化.实验结果表明,压缩感知生成的融合数据优于原始卫星观测,深度学习模型能够有效地对融合数据进行降噪与优化.
Data Fusion and Optimization Based on Multiple Satellites XCO2 Data
With the continuous development of satellite observation technology,more and more atmospheric composition data,including CO2,are available.Multiple satellites data fusion is an effective means to improve the accuracy and spa-tiotemporal resolution of data.In this paper,compressed sensing and deep learning techniques were used to optimize and fuse the remote sensing observed data of three passive detection satellites,namely GOSAT,OCO-2,and OCO-3.Com-pressed sensing is used to generate initial fused data,and the deep learning model further enhanced the seasonal cycle feature of CO2 data to optimize the initial fused data.Experimental results showed that the fused data generated by com-pressed sensing were superior to the original satellite observations,and the deep learning model could effectively denoise and optimize the fused data.

XCO2,data fusioncompressed sensing,deep learning

鞠巍、王瑞

展开 >

上海大学通信与信息工程学院,上海 200444

XCO2 数据融合 压缩感知 深度学习

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(1)
  • 10