首页|基于组合森林的工业控制系统入侵检测

基于组合森林的工业控制系统入侵检测

扫码查看
随着工业控制系统与互联网的关联逐渐紧密,增加了工控系统被外部入侵的可能性,其网络安全也变得日渐重要.针对上述问题,提出了一种基于组合孤立森林的IPCA-CIF入侵检测方法.该方法在PCA的基础上引入信息价值实现特征提取;其次,结合孤立森林和扩展孤立森林提出了一种组合森林的入侵检测方法,对降维后的数据进行入侵检测;最后构建入侵检测模型进行结果验证.实验表明,IPCA-CIF模型在SWaT数据集上,其检测率为0.986,F1-score可达0.893,具有良好的检测性能.
Intrusion Detection of Industrial Control System Based on Composite Forest
With the increasingly close connection between industrial control systems and the Internet,the possibility of external intrusion into industrial control systems has increased,and their network security has become increasingly important.In response to the above issues,this paper proposes an IPCA-CIF intrusion detection method based on combined isolated forests.This method introduces information value to achieve feature extraction based on PCA.Secondly,a combined forest intrusion detection method combining isolated forests and extended isolated forests is proposed to perform intrusion detec-tion on dimensionality reduced data.Finally,construct an intrusion detection model for result validation.The experiment shows that the IPCA-CIF model has a detection rate of 0.986 and an F1 score of 0.893 on the SWaT dataset,demonstrat-ing good detection performance.

industrial control systemintrusion detectionisolation forestfeature extraction

金彦亮、王浩、高塬

展开 >

上海大学通信与信息工程学院,上海 200444

上海大学上海先进通信与数据科学研究院,上海 200444

工业控制系统 入侵检测 孤立森林 特征提取

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(1)
  • 8