首页|基于YOLOv8的工业环境平面积尘识别与清洁度评定

基于YOLOv8的工业环境平面积尘识别与清洁度评定

扫码查看
针对高清洁度要求的工业场景的平面清洁缺乏积尘识别的问题,利用高效的YOLOv8算法对平面上的灰堆、灰斑、反光进行类别和数量的识别,并分配不同的权重系数加权得到清洁度指数,然后对检测区域洁净度进行等级评定.系统根据清洁度等级来指挥平面清洁机器人进行清洁任务,使其高效完成清洁作业.实验结果表明:该模型在在测试集上的mAP@0.5达到80.6%,摄像头实时检测帧率可达到50~143 fps,可准确进行平面积尘识别并对检测平面进行清洁度评定.
Industrial Environment Flat Area Dust Recognition and Cleanliness Assessment Based on YOLOv8
To solve the problem of lack of dust accumulation recognition in the flat area cleaning of industrial scenes with high cleanliness requirements,the efficient YOLOv8 algorithm is used to identify the category and number of ash piles,grey spots and reflections on the flat area,and assign different weighting parameters to weight the cleanliness index,and then evaluate the cleanliness level of the detected area.The system directs the flat area cleaning robot to perform cleaning tasks according to the cleanliness level,so that it can complete the cleaning operation efficiently.The model achieves 80.6%mAP@0.5 on the test dataset,and the real-time camera detection frame rate can reach 50~143 frames/s,which can accurately perform flat area dust identification and cleanliness assessment of the detection area.

deep learningYOLOv8flat area dust accumulation recognitionflat area cleanliness assessment

朱婧、陈鲤文、刘伟涛

展开 >

福建工程学院电子电气与物理学院,福建福州 350118

深度学习 YOLOv8 平面积尘识别 平面清洁度评定

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(2)
  • 6