首页|基于X-CUBE-AI的神经网络手语识别系统设计

基于X-CUBE-AI的神经网络手语识别系统设计

扫码查看
手语交流是聋哑人与他人交流的主要方法,设计了一款基于STM32的神经网络手语识别系统,采用TensorFlow和Keras机器学习框架训练网络模型,由于训练数据的局限性,加入L2正则化以解决训练过拟合问题.使用意法半导体推出的STM32Cube.AI工具包在STM32嵌入式平台上部署神经网络,搭载OV2640摄像头采集图像并进行缩放处理,将图像数据传入网络进行推理可获得识别结果.经测试,网络模型获得了较好的鲁棒性和适应性,在STM32上运行平均每帧推理时间为15.8 ms,平均准确率达92.3%.使用STM32作为手语识别终端,极大地提高了设备的便携性,节约成本,反应迅速.为聋哑人与正常人交流提供了一种新的解决方案,具有较高的实际应用价值.
Design of Sign Language Recognition System Based on X-CUBE-AI
The main method for communication between deaf-mute people and others is sign language.A neural net-work-based sign language recognition system is designed based on STM32,and the TensorFlow and Keras machine learn-ing frameworks are used to train the network model.Due to the limitations of the training data,L2 regularization is intro-duced to solve the overfitting problem during training.Use the STM32Cube.AI toolkit launched by STMicroelectronics to de-ploy a neural network on the STM32 embedded platform,use the OV2640 camera to collect images and perform zoom processing,and transfer the image data to the network for inference to obtain recognition results.After testing,the network model has achieved good robustness and adaptability.The average inference time per frame is 15.8 ms when running on STM32,and the average accuracy rate is 92.3%.Using STM32 as a sign language recognition terminal greatly improves the portability of the device,saves costs,and responds quickly.It provides a new solution for the communication between deaf-mute and normal people,which has high practical application value.

sign language recognitionX-CUBE-AIoverfittingneural networkL2 regularizationSTM32image recognition

牛帅、宗诗怡、胡威、许彬、董振华

展开 >

金陵科技学院电子信息工程学院,江苏 南京 211169

东南大学成贤学院经济管理学院,江苏 南京 210088

手语识别 X-CUBE-AI 过拟合 神经网络 L2正则化 STM32 图像识别

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(3)
  • 13