首页|基于改进DBNet与改进CRNN的集装箱箱号识别系统

基于改进DBNet与改进CRNN的集装箱箱号识别系统

扫码查看
针对当前集装箱箱号识别算法定位不准确,对倾斜、扭曲文本识别能力弱的问题,提出了一种基于改进DBNet与改进CRNN的集装箱箱号识别算法.在DBNet的特征提取网络中引入了注意力机制,有效提升了其文本定位能力;在CRNN中引入了空间变换网络,增强了其对倾斜、扭曲文本的识别能力.将文本定位与识别模型联合串联推理,在测试场景下达到了98.3%的识别率,具有实用价值.
Container Number Recognition System Based on Improved DBNet and Improved CRNN
Aiming at the inaccurate positioning of the current container number recognition algorithm and the weak ability to recognize skewed and distorted text,a container number recognition algorithm based on improved DBNet and improved CRNN is proposed in this paper.The attention mechanism is introduced in the feature extraction network of DBNet,which effectively improves its text positioning ability.The spatial transformation network is introduced in CRNN,which enhances its ability to recognize skewed and distorted text.The combination of text location and recognition model in series reasoning has achieved a recognition rate of 98.3%in the test scenario,which is of practical value.

DBNetSTNCRNNcontainertext recognition

沈嘉康

展开 >

上海大学通信与信息工程学院,上海 200444

DBNet STN CRNN 集装箱 文本识别

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(3)
  • 8