首页|一种针对视频的人体姿态估计的加速算法

一种针对视频的人体姿态估计的加速算法

An Accelerated Algorithm of Human Pose Estimation for Video

扫码查看
为了解决视频的高性能人体姿态估计算法参数量和计算量庞大导致的推理速度慢的问题,提出了基于高分辨率网络(HRNet)的人体姿态估计改进算法.该算法在检测过程中采用隔帧检测和去抖动的优化处理,优化人体检测流程;针对姿态估计网络,使用ShuffleUnitV2 组件对 HRNet 重新设计得到了S-HRNet,提高网络的利用率.实验结果表明:在公开数据集COCO训练集上,改进算法的总推理时间为 356 ms,而原始算法总推理时间为 992 ms,有效地提高推理速度.改进后的算法解决了原有的 HRNet 模型参数量大、推理速度慢的问题,同时也保持了一定的性能,为实际部署提供了一个适合的算法.
In order to solve the problem of slow inference speed caused by the large number of parameters and com-putation of high performance human pose estimation algorithm for video,an improved algorithm of human pose estimation based on High Resolution Network(HRNet)is proposed.The algorithm uses interframe detection and de-jittering optimiza-tion in the detection process to optimize the human detection process.For the pose estimation network,the S-HRNet is obtained by redesigning the HRNet using ShuffleUnitV2 component to improve the utilization of the network.The experimen-tal results show that the proposed accelerated algorithm for human pose estimation has a total inference time of 356ms in the public data set COCO training set,while the original algorithm has a total inference time of 992ms,which effectively im-proves the inference speed.The improved algorithm solves the problems of large parameters and slow inference speed of the original HRNet model,while maintaining a certain performance,providing a suitable algorithm for actual deployment.

human pose estimationhigh-resolution networksinference speednetwork structure

王俊杭、陈贝佳、邵家玉

展开 >

东南大学自动化学院,江苏 南京 210096

人体姿态估计 高分辨率网络 推理速度 网络结构

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(4)
  • 8