首页|基于深度学习算法的直流充电桩相对误差预测研究

基于深度学习算法的直流充电桩相对误差预测研究

Research on Relative Error Prediction of Direct Current Charging Pile Based on Deep Learning Algorithm

扫码查看
针对充电桩建设越来越多、设备易出现偏差的现状,提出了一种基于深度学习算法的直流充电桩相对误差预测的方法.首先将直流充电桩采集的数据集进行预处理,然后搭建了LightGBM、N-Linear以及CNN模型进行相对误差预测,并采用MAE以及MSE作为评估指标进行评估.结果表明,LightGBM 模型效果最理想,MAE 较 N-Linear 模型降低了57.91%,较CNN降低了 30.16%,MSE较N-Linear模型降低了 82.85%,较CNN降低了约 47.32%.
In response to the increasing number of charging pile constructions and the tendency of equipment devia-tions,a method for relative error prediction of direct current charging piles based on deep learning algorithms is proposed in this paper.Firstly,the dataset collected from the direct current charging piles is preprocessed.Then,LightGBM,N-Linear and CNN models are constructed for relative error prediction,and MAE and MSE are adopted as evaluation metrics.The results indicate that the LightGBM model performs the best,with a decrease of 57.91%in MAE compared to the N-Linear model and a decrease of 30.16%compared to the CNN model.The MSE is reduced by 82.85%compared to the N-Linear model and approximately 47.32%compared to the CNN model.

deep learningrelative errorLightGBMtime series prediction

余青泉、陈鲤文

展开 >

福建理工大学泛在感知与多传感器智能融合研究所,福建 福州 350118

深度学习 相对误差 LightGBM 时间序列预测

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(4)
  • 3