首页|基于深度学习算法的直流充电桩相对误差预测研究

基于深度学习算法的直流充电桩相对误差预测研究

扫码查看
针对充电桩建设越来越多、设备易出现偏差的现状,提出了一种基于深度学习算法的直流充电桩相对误差预测的方法.首先将直流充电桩采集的数据集进行预处理,然后搭建了LightGBM、N-Linear以及CNN模型进行相对误差预测,并采用MAE以及MSE作为评估指标进行评估.结果表明,LightGBM 模型效果最理想,MAE 较 N-Linear 模型降低了57.91%,较CNN降低了 30.16%,MSE较N-Linear模型降低了 82.85%,较CNN降低了约 47.32%.
Research on Relative Error Prediction of Direct Current Charging Pile Based on Deep Learning Algorithm
In response to the increasing number of charging pile constructions and the tendency of equipment devia-tions,a method for relative error prediction of direct current charging piles based on deep learning algorithms is proposed in this paper.Firstly,the dataset collected from the direct current charging piles is preprocessed.Then,LightGBM,N-Linear and CNN models are constructed for relative error prediction,and MAE and MSE are adopted as evaluation metrics.The results indicate that the LightGBM model performs the best,with a decrease of 57.91%in MAE compared to the N-Linear model and a decrease of 30.16%compared to the CNN model.The MSE is reduced by 82.85%compared to the N-Linear model and approximately 47.32%compared to the CNN model.

deep learningrelative errorLightGBMtime series prediction

余青泉、陈鲤文

展开 >

福建理工大学泛在感知与多传感器智能融合研究所,福建 福州 350118

深度学习 相对误差 LightGBM 时间序列预测

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(4)
  • 3