首页|基于神经网络的遥感图像飞机实时检测算法

基于神经网络的遥感图像飞机实时检测算法

扫码查看
针对在遥感图像飞机检测任务中精度较低、实时性差的问题,提出了一种改进YOLOv4 遥感图像检测的算法.该算法采用轻量级网络MobileNetV3 代替YOLOv4 最初的特征提取网络,保证其特征提取能力情况下,减少参数量;同时在路聚合网络(PANet)中使用深度可分离卷积代替传统卷积;在主干网络中引入BAM注意力机制,提高整体模型的泛化能力.然后对NMS网络进行了优化,以提升模型的最终识别精度.最后在自建的遥感飞机数据集上进行训练和测试.实验结果表明:相比原YOLOv4 算法,改进算法有着更高的检测精度和更快的检测速度.
Improved YOLOv4 Remote Sensing Image Aircraft Real-time Detection Algorithm
Aiming at the problems of low accuracy and poor real-time performance in remote sensing image aircraft de-tection tasks,an algorithm to improve YOLOv4 remote sensing image detection is proposed in this paper.The algorithm is based on YOLOv4,and uses a lightweight network MobileNetv3 instead of the original feature extraction network of YOLOv4 to reduce the number of parameters and improve the detection speed while ensuring its feature extraction capability.Mean-while,it uses depth-separable convolution instead of traditional convolution in the road aggregation network(PANet),and introduces the BAM attention mechanism in the backbone network to improve the overall.The BAM attention mechanism is introduced in the backbone network to improve the overall generalization ability of the model.Then the NMS network is op-timized to improve the final recognition accuracy of the model.

remote sensing imagesYOLOv4MobileNetv3deeply separable convolutionattentional mechanisms

刘志、杨江涛、许新云

展开 >

太原科技大学电子信息工程学院,山西 太原 030024

遥感图像 YOLOv4 MobileNetV3 深度可分离卷积 注意力机制

国家自然科学基金青年基金山西省高等学校科技创新项目

619051722021L295

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(4)
  • 14