首页|基于Canny边缘检测的空频结合图像增强算法

基于Canny边缘检测的空频结合图像增强算法

扫码查看
针对多普勒图在雷达信号处理中被广泛应用,但是却面临复杂情况下识别准确率不高的问题,提出了一种基于Canny边缘检测的空频结合图像增强算法.该方法首先利用已有的数据集,对原始图片进行直方图均衡化与同态滤波的空频结合处理;然后进行Canny边缘检测操作,旨在增强谱图信息;最后采用KNN(K-Nearest Neighbors)算法对谱图进行识别分类.实验结果表明,所提出算法可有效地将跳跃、慢跑等 6 种动作的识别准确率提高到 94%,验证了该方法处理图谱并进行分类的可行性.
Spatial Frequency Combined Image Enhancement Algorithm Based on Canny Edge Detection
In response to the widespread application of Doppler maps in radar signal processing,but facing the issue of low accuracy in complex situations,this paper proposes a Canny edge detection-based spatial-frequency combined image enhancement algorithm.This method first utilizes an existing dataset to perform spatial-frequency combined processing on the original images using histogram equalization and homomorphic filtering.Then,it applies the Canny edge detection oper-ation aiming to enhance spectral information.Finally,the KNN(K-Nearest Neighbors)algorithm is employed for the recogni-tion and classification of the spectral maps.The experimental results indicate that the proposed algorithm can effectively im-prove the recognition accuracy of six types of actions,such as jumping and running,to 94%.This validates the feasibility of the proposed method for processing spectral maps and performing classification.

behavior recognitionimage enhancementCanny algorithmK-Nearest Neighbor algorithm

彭兆东、涂琦玉、彭烨超

展开 >

上海大学通信与信息工程学院,上海 200444

行为识别 图像增强 Canny算法 K最近邻算法

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(4)
  • 11