首页|基于YOLOv5的小动物目标检测算法研究

基于YOLOv5的小动物目标检测算法研究

扫码查看
针对现有变电站入侵检测算法误报率高、对小目标检测精度低等问题,提出了一种基于改进YOLOv5 的变电站入侵小动物目标检测算法.将SENet通道注意力模块和卷积注意力模块(CBAM)中的激活函数改进为HardSwish函数,并在主干网络和颈部网络中分别引入改进后的SENet_H模块和CBAM_H模块;采用空洞空间池化金字塔(ASPP)对空间金字塔池化进行优化,并在检测端增加一个小目标检测层,以提高对小动物的检测精度.此外,还构建了小动物数据集,并采用9-Mosaic数据增强方式,丰富了样本目标.实验结果表明:改进后的小动物目标检测算法相较于原YOLOv5 算法精确率提升了 11.6%,召回率提升了 10.2%,平均精度均值提升了 8.1%.
Research on Small Animal Target Detection Algorithm Based on YOLOv5
Aiming at the problems of high false alarm rate and low detection accuracy of small targets in existing sub-station intrusion detection algorithms,a substation intrusion small animal target detection algorithm based on improved YOLOv5 is proposed.The activation function in the SENet channel attention module and Convolutional Block Attention Mod-ule(CBAM)is improved to HardSwish function,and the improved SENet_H module and CBAM_H module is separately intro-duced into the backbone network and the neck network.Experimental results show that the improved small animal target detection algorithm outperforms the original YOLOv5 algorithm by 11.6%in precision,10.2%in recall,and 8.1%in mean average precision.

target detectionattention mechanismatrous spatial pyramid poolingsmall animal detection

汪香念、饶红霞、谢家豪

展开 >

广东工业大学自动化学院,广东 广州 510006

目标检测 注意力机制 空洞空间池化金字塔 小动物检测

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(5)
  • 9