首页|基于改进YOLOv7箱式货物目标检测研究

基于改进YOLOv7箱式货物目标检测研究

扫码查看
针对箱式货物集中摆放以致于难以实现该精度目标识别问题,提出了一种基于YOLOv7 网络的改进方法,并将其应用于箱式目标集中摆放中进行检测.由于在拆垛时箱式货物通常堆叠在一起,相互遮挡,这使得目标检测模型难以准确地识别每个箱子的位置和边界框,再加上复杂恶劣的工业环境,难以实现更快速注意目标,因此在原有的YOLOv7 网络中添加CBAM注意力机制,通过通道注意力模块和空间注意力模块实现更快捷和高效地分析复杂场景信息,进而达到实时性目标,使得拆垛机器人可以更快、更精准识别定位目标货物,进而执行抓取动作;此外,更换损失函数Focal Loss旨在缓解模型在大多数易分类的负样本上训练过于自信的问题,从而改善难以分类的正样本的检测效果.
Research on Improved YOLOv7 Container Cargo Target Detection
Aiming at the problem that it is difficult to realize the precision target identification because of the centralized placement of box-type goods studied in this paper,an improved method based on YOLOv7 network is proposed and ap-plied to the detection in the centralized placement of box-type targets.Since box-type goods are usually stacked together and shielded from each other during unstacking,it is difficult for the target detection model to accurately identify the loca-tion and boundary box of each box.Coupled with the complex and harsh industrial environment,it is difficult to realize faster attention to the target.Therefore,CBAM attention mechanism is added to the original YOLOv7 network.Through the channel attention module and the spatial attention module,the complex scene information can be analyzed more quickly and efficiently,so as to achieve the real-time goal,so that the unpalletizing robot can identify and locate the target goods more quickly and accurately,and then perform the grasping action.

target detectionattention mechanismloss function

吕雪峰

展开 >

上海大学机电工程与自动化学院,上海 宝山 200444

目标检测 注意力机制 损失函数

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(5)
  • 8