首页|面向工业机器人系统的入侵检测系统的应用研究

面向工业机器人系统的入侵检测系统的应用研究

扫码查看
针对工业机器人的控制系统通过使用基于Jacobian的显著图攻击生成对抗样本并探索分类行为,探索对抗学习算法优化目标监督模型,并探讨在工控网络防御过程中使用对抗机器学习算法训练的监督模型,是否有助于改善人工智能算法对网络安全防御系统的鲁棒性.基于构建的工业机器人的自身的网络环境,采用定向漏洞攻击,并通过网关采集过程中产生的流量数据,用于对抗机器学习算法的优化和完善.总体而言,在对抗机器学习算法中,两种广泛使用的分类器Random Forest和J48 的分类性能分别下降了 16 和 20 个百分点,表明采用对抗性机器学习算法的防护策略的鲁棒性改善明显,能有效防护相关系统的网络攻击.
In this paper,the control system of industrial robots generates adversarial samples by using Jacobian-based significance graph attacks and explores classification behaviors,explores adversarial learning algorithms to optimize the tar-get supervision model,and explores whether the supervision model trained by adversarial machine learning algorithms in the process of industrial control network defense can help improve the robustness of artificial intelligence algorithms to network security defense systems.Based on the network environment of the constructed industrial robot,this paper adopts direc-tional vulnerability attack and collects traffic data generated in the process through the gateway to optimize and improve the anti-machine learning algorithm.In general,among adversarial machine learning algorithms,the classification perfor-mance of Random Forest and J48,two widely used classifiers,decreased by 16 and 20 percentage points respectively,in-dicating that the robustness of the protection strategy adopted by adversarial machine learning algorithm is significantly im-proved,and it can effectively protect related systems against network attacks.

machine learningindustrial robotprotection strategyrobustnessintrusion detection system

万彬彬、赵郑斌、巩潇、崔登祺、李梦玮

展开 >

中国软件评测中心(工业和信息化部软件与集成电路促进中心),北京 100084

机器学习 工业机器人 防护策略 鲁棒性 入侵检测系统

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(6)
  • 5