首页|基于YOLOv3的X光图像违禁品目标检测

基于YOLOv3的X光图像违禁品目标检测

扫码查看
基于人类视觉的X光图像违禁品检测往往受限于工作强度和复杂人流环境,给安检工作带来巨大挑战.使用人工智能方法对违禁品进行自动检测与判别,对辅助安检工作具有重要的现实意义.提出基于YOLOv3 的X光图像违禁品目标检测模型,在传统YOLOv3 的基础上增加了一个检测尺度,实现实时的X光图像违禁品的自动判别,即不仅能够辨别出违禁品的种类,还能对违禁品在图像中所处的位置进行标定.实验结果表明,改进后的YOLOv3 在Precision、Recall、mAP和F1 四个模型评价指标上均取得提高,其中mAP值达到 96.2%,对于安检X光图像违禁品目标具有良好的检测效果.
Detection of Prohibited Objects in X-ray Images Based on YOLOv3
The detection of prohibited items in X-ray images based on human vision is often limited by work intensity and complex human flow environments,which brings huge challenges to security inspection work.The use of artificial intelli-gence methods for automatic detection and discrimination of prohibited items has important practical significance in assisting security inspection work.This paper proposes a target detection model for prohibited items in X-ray images based on YOLOv3,which adds a detection scale to the traditional YOLOv3 to achieve real-time automatic identification of prohibited items in X-ray images.This model not only identifies the types of prohibited items,but also calibrates the position of pro-hibited items in the image.The experimental results show that the improved YOLOv3 has achieved improvements in the e-valuation indicators of Precision,Recall,mAP,and F1 models,with a mAp value of 96.2%.It has good detection perfor-mance for prohibited object targets in X-ray images.

YOLOv3X-ray imagestarget detection

杨登杰、赵昕、谢悦

展开 >

中国联合网络通信有限公司政企客户事业群解决方案部,北京 100033

YOLOv3 X光图像 目标检测

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(6)
  • 1