首页|基于数字孪生的火电机组汽轮机故障预警研究

基于数字孪生的火电机组汽轮机故障预警研究

Fault Early Warning of Steam Turbine of Thermal Power Unit Based on Digital Twin

扫码查看
通过对火电机组历史运行数据的分析,利用深度学习中的深度森林算法,合理确定模型的输入输出参数,采用改进的蝙蝠算法进行超参数优化,构建高精度的数据驱动模型.为实现故障检测,选取各模型的输出参数,利用相似度函数法计算预测输出数组与实际输出数组之间的欧几里得距离,实现对故障的准确检测.以加热器管泄漏为例实验验证,结果表明,借助建立的数字孪生模型和故障检测体系,能够准确检测汽轮机系统中加热器管路泄漏故障,证明了该方法的有效性.
Through the analysis of the historical operation data of thermal power units,the deep forest algorithm in deep learning is used to determine the input and output parameters of the model reasonably,and the improved bat algorithm is used to optimize the super parameters to build a high-precision data-driven model.In order to realize fault detection,the output parameters of each model are selected,and the Euclidean distance between the predicted output array and the ac-tual output array is calculated by using the similarity function method to achieve accurate fault detection.Taking the heater tube leakage as an example,the results show that with the help of the digital twin model and fault detection system estab-lished in this paper,the heater pipeline leakage fault in the steam turbine system can be detected accurately,which proves the effectiveness of this method.

steam turbine systemdata driven modeldeep forestfault detection

叶今墨、聂海龙、张凡、马明日、田震

展开 >

保定慢牛信息科技有限公司,河北保定 071000

汽轮机系统 数据驱动模型 深度森林 故障检测

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(6)
  • 7