首页|基于CAE-ECA模型的滚动轴承声纹信号异常监测方法

基于CAE-ECA模型的滚动轴承声纹信号异常监测方法

扫码查看
滚动轴承是电站辅机关键部件,其运行工况复杂且多处于强噪声环境,异常状态难以准确识别.针对传统声纹分析方法人工提取特征表达不充分且过分依赖专家知识的问题,提出了一种基于卷积自编码网络(Convolutional Auto-En-code,CAE)与有效通道注意力机制(Efficient Channel Attention,ECA)相结合的模型,实现滚动轴承声纹特征自适应提取与异常状态高效识别.首先,将一维时序声纹信号重复间隔采样构建输入样本,利用卷积、池化等神经网络结构自适应提取轴承运行声音信号的深层特征.然后,通过有效通道注意力模块增加卷积自编码网络对关键特征的权重.通过自编码网络结构实现声音信号的重构且仅使用滚动轴承正常运行声音信号数据进行模型训练.最后,通过模型对异常状态数据的重构偏差评估滚动轴承异常状态.试验表明,CAE-ECA模型在不同噪声条件下均具有较高的诊断准确率.
Abnormal Monitoring Method of Voiceprint Signal of Rolling Bearing Based on CAE-ECA Model
In order to solve the problem that traditional voiceprint analysis methods do not express enough features man-ually and rely too much on expert knowledge,a model based on Convolutional Auto-Encode network and Effective Channel Attention mechanism is proposed to realize adaptive voiceprint feature extraction and efficient recognition of abnormal states of rolling bearings.First of all,the one-dimensional time sequence voiceprint signal is sampled repeatedly at intervals to con-struct input samples,and the deep features of bearing running sound signals are adaptively extracted by using neural net-work structures such as convolution and pooling.Then,the weight of the convolutional self-coding network to the key features is enhanced by the effective channel attention module.The self-coding network structure is used to reconstruct the sound signal and only the normal running sound signal data of rolling bearings are used for model training.Finally,the abnormal state of rolling bearing is evaluated by the reconstruction deviation of the abnormal state data of the model.

rolling bearingvoiceprint anomaly monitoringconvolution self-codingeffective channel attention mechanism

王凌锋

展开 >

国家能源集团谏壁发电有限公司,江苏 镇江 212006

滚动轴承 声纹异常监测 卷积自编码 有效通道注意力机制

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(7)
  • 3