首页|基于深度学习的滤光片表面划痕检测方法

基于深度学习的滤光片表面划痕检测方法

扫码查看
在光学滤光片生产制造的过程中,由于生产环境和制造工艺的影响,滤光片表面会出现划痕,而划痕会影响滤光片的使用.采用人工检查存在效率低和漏检误检的问题,针对这一问题提出了一种检测滤光片划痕并计算划痕尺寸的方法.首先在U-NET的跳跃连接部分加入CBAM注意力机制来增强浅层特征的表达能力,使得识别出的划痕更加完整和准确,接着在解码阶段使用多尺度特征融合模块来融合各层输出的特征图,该算法的划痕识别准确率可达 95.17%;然后利用骨架化算法对划痕区域提取中心线,计算中心线的长度作为划痕的长度;最后利用最大内接圆直径法计算划痕的宽度.实验结果表明,该方法与其他的测量方法相比误差最小,可以用于实际的生产测量,提高生产效率.
Deep Learning-based Methods for Scratch Detection on Filter Surface
During the manufacturing process of optical filters,scratches will appear on the surface of the filters.The use of manual inspection suffers from the problems of low efficiency and miss detection and misdetection,and this paper pro-pose a method to detect the scratches on filters and calculate the size of the scratches to address this problem.Firstly,the CBAM attention mechanism is added to the jump connection part of U-NET to enhance the expression ability of the shallow features,which makes the identified scratches more complete and accurate,and then the multi-scale feature fusion module is used to fuse the feature maps of each layer in the decoding stage,and the accuracy of this algorithm in identi-fying scratches is up to 95.17%,and then,the skeletonization algorithm is used to extract the centre line of the scratched area,and the length of the centre line is calculated as the length of the scratches.The centre line is extracted from the scratched area using the skeletonisation algorithm,the length of the centre line is calculated as the length of the scratch,and finally the width of the scratch is calculated using the method of maximum internal circle diameter.

optical filtersU-netquantitative analysis of scratches

高乃凤、郑积仕

展开 >

福建理工大学电子电气与物理学院,福建 福州 350000

福建理工大学交通运输学院,福建 福州 350000

光学滤光片 U-net 划痕定量分析

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(7)
  • 1