首页|基于CFSFDP与四分位算法结合的风电机组异常数据处理方法研究

基于CFSFDP与四分位算法结合的风电机组异常数据处理方法研究

扫码查看
由于风力发电机组运行在恶劣环境中,导致SCADA系统采集的原始数据中会存在异常数据,对原始数据进行精确有效的数据预处理,是后续故障预警工作的基础.提出了CFSFDP算法与四分位法相结合的异常数据处理方法.基于国内实际风电场的测量数据实验验证,首先通过CFSFDP算法检测异常状态和离群噪声点,并使用四分位法处理正常工况附近的噪声数据.实验结果表明该方法可以有效剔除异常数据,提高数据质量,满足后续研究的需求.
Abnormal Data Processing Method of Wind Turbine Based on CFSFDP and Quartile
As the wind turbine runs in the harsh environment,there will be abnormal data in the original data collected by the SCADA system.Accurate and effective data preprocessing of the original data is the basis of the follow-up fault early warning work.This paper presents an abnormal data processing method based on the combination of CFSFDP algo-rithm and quartile method.Based on the experimental verification of the measured data of the actual domestic wind farms,firstly,the abnormal state and outlier noise points are detected by the CFSFDP algorithm,and the quartile method is used to deal with the noise data near the normal working conditions.The experimental results show that this method can effec-tively eliminate the abnormal data,improve the data quality and meet the needs of follow-up research.

wind power generationSCADAquartile algorithmCFSFDP algorithm

田震、聂海龙、叶今墨、马明日、张凡

展开 >

保定慢牛信息科技有限公司,河北 保定 071000

风力发电 SCADA 四分位算法 CFSFDP算法

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(7)
  • 5