首页|基于小波包能量和CS-ELM的有杆泵抽油井故障诊断

基于小波包能量和CS-ELM的有杆泵抽油井故障诊断

扫码查看
针对目前有杆泵抽油井故障诊断人工分析方法效率低问题,提出一种基于小波包能量和布谷鸟算法优化极限学习机(CS-ELM)的有杆泵抽油井故障诊断方法.首先对电功率数据进行小波包分解得到多个子频带,计算各频带的能量值再归一化处理后组合成特征向量;然后通过CS算法优化ELM使其得到最优的输入权值和隐含层阈值;最后利用CS-ELM模型对提取的特征向量进行有杆泵抽油井故障诊断并与SVM、BP和ELM的诊断结果进行对比.仿真结果表明:CS-ELM的有杆泵抽油井故障诊断的准确率最高,验证了该方法的有效性.
Fault Diagnosis of Sucker Rod Pumping Wells Based on Wavelet Packet Energy and CS-ELM
Currently,the manual analysis method for fault diagnosis of rod-pumped oil wells is inefficient,a fault diagno-sis method of sucker rod pumping wells based on wavelet packet energy and cuckoo algorithm optimized extreme learning machine(CS-ELM)is proposed in this paper.Firstly,the electric power data is decomposed by wavelet packet to obtain multiple sub-bands,and the energy values of each band are calculated and normalized to form a feature vector.Then,the CS algorithm is used to optimize the ELM to obtain the optimal input weight and hidden layer threshold.Finally,the CS-ELM model is used to diagnose the fault of the rod pumping well with the extracted feature vector and compared with the diagnosis results of SVM,BP and ELM.

wavelet packet energyfault diagnosisextreme learning machinecuckoo algorithm

严永进、袁春华

展开 >

沈阳理工大学自动化与电气工程学院,辽宁 沈阳 110159

小波包能量 故障诊断 极限学习机 布谷鸟算法

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(7)
  • 8