首页|基于因果效应的K2算法的研究与改进

基于因果效应的K2算法的研究与改进

扫码查看
贝叶斯网络是在不确定环境中进行推理的重要模型.从数据中正确学习贝叶斯网络结构是研究贝叶斯网络的重难点.为解决K2 算法的学习效果受到输入节点顺序影响的问题,基于Pearl的因果理论,提出了一种基于因果效应的贝叶斯网络结构学习算法.该算法首先利用定义的因果效应强度来学习网络节点顺序;其次将获得的网络节点顺序输入K2 算法得到初始网络结构;最后通过定义的因果效应强度删除边来修正初始网络结构.在贝叶斯网络标准数据集Asia和Alarm上的实验表明该方法对小型和大型网络都具有较好的学习效果.
Research and Improvement of K2 Algorithm Based on Casual Effect
Bayesian network is an important model for reasoning in uncertain environments.Learning the structure of Bayesian networks correctly from data is a challenging task.To address the issue of the learning effectiveness of the K2 algorithm being influenced by the order of input nodes,a causal-effect-based Bayesian network structure learning algo-rithm is proposed based on Pearl's causal theory.Firstly,this algorithm learns the network node order using defined causal effect strengths.Secondly,the obtained network node order is input into the K2 algorithm to obtain an initial network struc-ture.Finally,the initial network structure is modified by removing edges based on the defined causal effect strengths.The experiments on the standard datasets Asia and Alarm for Bayesian networks demonstrate that this method exhibits good learning performance for both small-scale and large-scale networks.

Bayesian networkK2 algorithmcasual effect

谈子健、屈红冰、肖寒、张捷

展开 >

南京理工大学自动化学院,江苏 南京 210094

贝叶斯网络 K2算法 因果效应

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(7)