首页|基于BP神经网络的机制砂混凝土抗压强度预测

基于BP神经网络的机制砂混凝土抗压强度预测

扫码查看
机制砂混凝土抗压强度受多种因素影响,为了提高混凝土品质,需要对其强度特性进行分析.针对传统的机制砂混凝土抗压强度检测方法,利用具有非线性特性、学习能力和自适应能力的BP神经网络进行分析.将石粉含量、水泥、粉煤灰、水、机制砂、碎石和养护龄期作为输入参数,抗压强度作为输出参数,构建了一个包含 6 个隐含层节点的BP神经网络模型.通过仿真结果表明,平均相对误差为 3.47%,线性相关系数大于 0.99,该模型具有良好的预测性.
Prediction of Compressive Strength of Mechanical Sand Concrete Based on BP Neural Network
The compressive strength of machine-made sand concrete is influenced by various factors,and it is neces-sary to analyze its strength characteristics in order to improve the quality of concrete.In this paper,a BP neural network with nonlinear characteristics,learning ability,and adaptive ability was used to analyze the compressive strength of ma-chine-made sand concrete.Stone powder content,cement,fly ash,water,machine sand,gravel,and curing age are taken as input parameters,while compressive strength was taken as the output parameter.A BP neural network model with 6 hidden layer nodes is constructed.The simulation results showed an average relative error of 3.47%and a linear correlation coefficient greater than 0.99,indicating that the model has good predictive performance.

BP neural networkmachine-made sand concretecompressive strength prediction

赵子祥、陈立明、姚琳宁、陈世斌

展开 >

长安大学工程机械学院道路施工技术与装备教育部重点实验室,陕西 西安 710064

西部机场集团建设工程(西安)有限公司,陕西 西安 710000

临沂市公路发展中心,山东 临沂 276000

BP神经网络 机制砂混凝土 抗压强度预测

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(8)