首页|基于深度学习的暴力行为识别研究

基于深度学习的暴力行为识别研究

扫码查看
暴力行为识别是视频行为识别领域研究的一个研究方向.随着深度学习的发展,视频行为识别在过去十年里取得了显著的进步,但也面临了新的挑战,例如如何有效地建模视频中的长时序信息、如何降低计算开销等.针对此问题,引入了一种基于软注意力机制和深度可分离卷积LSTM的深度学习网络模型,称为Att-SepConvLSTM,首先利用轻量级的NasNetMobile网络进行视频帧的空间特征提取,然后将空间特征图依次输入进去,得到全局时序特征,最后经过分类层输出是否存在暴力行为的二分类结果.
Research on Violent Action Recognition Based on Deep Learning
Violent action recognition is a research direction in the field of video action recognition.With the development of deep learning,video action recognition has made significant progress in the past decade,but also faced new chal-lenges,such as how to effectively model the long-term temporal information in videos,how to reduce the computational cost,etc.To address this problem,a deep learning network model based on soft attention mechanism and depthwise sep-arable convolution LSTM,called Att-SepConvLSTM,is introduced.It first uses a lightweight NasNetMobile network to extract the spatial features of video frames,then inputs the spatial feature maps sequentially,obtaining the global temporal fea-tures,and finally outputs whether there is violent action or not through a classification layer.

violent action recognitiondeep learningsoft attention mechanismdepthwise separable convolution LSTM

黄博、张捷、吕明

展开 >

南京理工大学自动化学院,江苏 南京 210094

暴力行为识别 深度学习 注意力机制 深度可分离卷积LSTM

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(8)