首页|基于决策树-逻辑回归模型的心脏病影响因素

基于决策树-逻辑回归模型的心脏病影响因素

扫码查看
为了研究心脏病的影响因素问题,借助在UCI数据库中提取的心脏病数据集,提出一种决策树-逻辑回归的心脏病影响因素识别方法.为了验证该方法的有效性,以准确率、F1 分数、特异性等作为模型评价指标.实验结果表明,决策树-逻辑回归显示胸痛类型、地中海贫血的血液疾病、达到的最大心率和荧光检查染色体的主要血液数量是心脏病的影响因素.从模型评价来看,所提出的决策树-逻辑回归模型各指标均比逻辑回归和决策树要高,与此同时,ROC曲线下面积的AUC值达到 0.858,说明该模型对分析心脏病因素效果和模型拟合更好,验证了该模型的有效性.
Influencing Factors of Heart Disease Based on Decision Tree-logistic Regression Model
In order to study the influencing factors of heart disease,a decision tree-logistic regression method is pro-posed to identify the influencing factors of heart disease by using the heart disease data set extracted from UCI database.In order to verify the effectiveness of the method,the accuracy,F1 score and specificity were used as evaluation indexes of the model.The experimental results showed that decision tree-logistic regression showed that the type of chest pain,the blood disease of thalassemia,the maximum heart rate achieved and the number of major blood chromosomes examined by fluorescence were influencing factors for heart disease.From the model evaluation,all indexes of the proposed decision tree-logistic regression model are higher than those of logistic regression and decision tree.Meanwhile,the AUC value of the area under ROC curve reached 0.858,indicating that the model was better for analyzing heart disease factors.

heart diseaselogistic regressiondecision treeDecision tree-logistic regression

杨艳平、李荣

展开 >

贵州民族大学数据科学与信息工程学院,贵州 贵阳 550025

心脏病 逻辑回归 决策树 决策树-逻辑回归

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(8)