首页|面向边缘端的超市异常行为检测研究

面向边缘端的超市异常行为检测研究

扫码查看
主流的超市防盗系统使用传统的人工查看视频监控的方式,消耗着巨大的人力成本且对网络带宽及数据时效性要求较高.因此提出了一种基于轻量级YOLOv5 网络模型的超市人体异常行为检测方法.该方法通过采用Ghost卷积替换标准卷积重构网络,降低模型参数量与计算量以适应边缘端低算力设备,同时增加更利于移动端架构设备应用的解耦全连接注意力机制,捕获更多长距离空间特征信息,提升检测精度.实验结果表明该方法较经典YOLOv5 检测方法精确率提升4.6%,计算量下降 43%,参数量下降 42%,检测速度提升 67%,在边缘端设备Sunrise x3 上每秒检测帧数可达到 17.82.
Research on Supermarket Abnormal Behavior Detection for Edge End
This paper proposes a lightweight YOLOv5 network model for abnormal human behavior detection in super-markets.This method uses Ghost convolution to replace the standard convolution to reconstruct the network,reduces the number of model parameters and calculation to adapt to low computing power devices at the edge,and adds a decoupled fully connected attention mechanism that is more conducive to the application of mobile terminal architecture devices to capture more long-distance spatial feature information and improve the detection accuracy.Experimental results show that compared with the classic YOLOv5 detection method,the accuracy of this method is increased by 4.6%,the calculation amount is reduced by 43%,the parameter amount is reduced by 42%,and the detection speed is increased by 67%.The detection FPS on the edge device Sunrise x3 can reach 17.82.

machine visionbehavior detectionedge computingYOLOv5attention mechanism

陈承源、邹顺水、彭晨、程云芬

展开 >

重庆科技大学智能技术与工程学院,重庆 401331

机器视觉 行为识别 边缘计算 YOLOv5 注意力机制

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(8)