首页|基于高斯分布损失的遥感图像旋转目标检测

基于高斯分布损失的遥感图像旋转目标检测

扫码查看
针对遥感图像目标检测物体长宽比例大、方向任意等特点,一般检测器存在检测精度不高的问题,提出一种基于YOLOv5 的遥感图像旋转目标检测,使用旋转回归损失KLD Loss,把旋转矩形包络框转换为高斯分布,提供了更加准确的回归预测,避免了边界问题.实现结果表明,所提算法在DOTA数据集检测精度(mAP50)达到了 77.97%,相比基础模型YOLOv5m提升了 5.75 个百分点.实验证明该算法在高精度的遥感图像旋转目标检测的有效性.
Detection of Rotating Targets in Remote Sensing Images Based on Gaussian Distribution Loss
Aiming at remote sensing image target detection objects with large aspect ratio and arbitrary orientation,the general detector high accuracy detection is not high,this paper proposes a YOLOv5-based remote sensing image rotating target detection,using rotational regression Loss KLD loss,converting the rotating rectangular envelope frame into a Gaus-sian distribution,which provides a more accurate regression prediction.The realization results show that the proposed algo-rithm achieves a detection accuracy(mAP50)of 77.97%in the DOTA dataset,which is an improvement of 5.75%compared to the base model YOLOv5m.Experiments demonstrate the effectiveness of the algorithm in this paper in detecting rotating targets in remote sensing images with high accuracy.

deep learningremote sensing imagesGaussian distributionrotating target detection

朱玉鹏、张文涛、孙山林、杜浩

展开 >

桂林电子科技大学电子工程与自动化学院,广西 桂林 541004

深度学习 遥感图像 高斯分布 旋转目标检测

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(9)