首页|基于改进ResNet-GRU的化工过程故障诊断

基于改进ResNet-GRU的化工过程故障诊断

Fault Diagnosis of Chemical Process Based on Improved ResNet-GRU

扫码查看
为了提高化工过程故障诊断的准确性和可靠性,提出了一种基于改进ResNet-GRU神经网络的化工过程故障诊断方法.首先,采用预激活的方式引入改进的ResNet模型,实现对输入数据的特征提取,从而增强了模型对关键特征的捕捉能力.其次,利用GRU模型对提取的特征进行时序建模,以更好地捕捉故障信号的动态变化.为了评估所提方法的有效性,实验使用TE化工过程数据集,并利用混淆矩阵进行结果分析,改进的ResNet-GRU模型平均故障诊断率可达到95.16%,与其他深度学习方法相比,该方法在故障诊断率和可靠性方面表现出显著的提升.
In order to enhance the accuracy and reliability of fault diagnosis in the chemical process,this paper pre-sents a method for chemical process fault diagnosis based on an improved ResNet-GRU neural network.Firstly,an im-proved ResNet model is introduced using pre-activation to extract features from the input data,thereby enhancing the model's ability to capture key features.Secondly,the GRU model is employed to perform temporal modeling on the ex-tracted features,allowing for better capturing of the dynamic changes in fault signals.To validate the effectiveness of this method,conducted experiments using the TE chemical process dataset and analyzed the results using a confusion matrix.The improved ResNet-GRU model achieved an average fault diagnosis rate of 95.16%,surpassing other deep learning methods in terms of fault diagnosis rate and reliability.

fault diagnosisresidual neural networkgated recurrent neural networkdeep learningchemical process

周子潍、李洪坤、杨童童

展开 >

沈阳化工大学理学院,辽宁 沈阳 110142

故障诊断 残差神经网络 门控循环神经网络 深度学习 化工过程

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(10)