首页|基于倒置残差块的图像压缩感知深度重建

基于倒置残差块的图像压缩感知深度重建

扫码查看
随着深度学习与压缩感知理论的相结合,更多堆叠更深层卷积的网络架构被提出,但是现有网络一般使用传统的残差结构来解决网络性能退化问题,引入的注意力机制也不能有效感知图像的全局信息.故引入倒残差结构和高效多尺度注意力机制,来捕捉更多的上下文信息从而更好地重建图像,经过大量对比实验可知,所提出的网络框架与现有深度学习的压缩感知重建算法相比,均获得了更好的性能指标和视觉效果.
Image Compression Sensing Depth Reconstruction Based on Inverted Residual Blocks
With the combination of deep learning and compressed sensing theory,more stacked and deeper convolu-tional network architectures have been proposed,but the existing networks generally use the traditional residual structure to solve the problem of network performance degradation,and the introduced attention mechanism cannot effectively perceive the global information of images.Therefore,this paper introduces a reciprocal residual structure and an efficient multi-scale attention mechanism to capture more context information and thus better reconstruct images.Through a large number of comparative experiments,it can be seen that the network framework proposed in this paper achieves better performance indicators and visual effects compared with the existing deep learning compressed sensing reconstruction algorithms.

compressive sensingattention mechanisminverted residual structurereconstruction

邓江峰、田金鹏

展开 >

上海大学通信与信息工程学院,上海 200444

压缩感知 注意力机制 倒残差结构 重建

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(10)